Основные области применения искусственных кристаллов. Применение кристаллов в промышленности

Применение кристаллов в науке и технике так многочисленны и разнообразны, что их трудно перечислить. Поэтому ограничимся несколькими примерами.

Самый твердый и самый редкий из природных минералов - алмаз. Сегодня алмаз в первую очередь камень-работник, а не камень-украшение.

Благодаря своей исключительной твердости алмаз играет громадную роль в технике. Алмазными пилами распиливают камни. Алмазная пила – это большой (до 2-х метров а диаметре) вращающийся стальной диск, на краях которого сделаны надрезы или зарубки. Мелкий порошок алмаза, смешанный с каким-нибудь клейким веществом, втирают в эти надрезы. Такой диск, вращаясь с большой скоростью, быстро распиливает любой камень.

Колоссальное значение имеет алмаз при бурении горных пород, в горных работах.

В граверных инструментах, делительных машинах, аппаратах для испытания твердости, сверлах для камня и металла вставлены алмазные острия.

Алмазным порошком шлифуют и полируют твердые камни, закаленную сталь, твердые и сверхтвердые сплавы. Сам алмаз можно резать, шлифовать и гравировать тоже только алмазом. Наиболее ответственные детали двигателей в автомобильном и авиационном производстве обрабатывают алмазными резцами и сверлами.

Рубин и сапфир относятся к самым красивым и самым дорогим из драгоценных камней. У всех этих камней есть и другие качества, более скромные, но полезные. Кроваво-красный рубин и синий сапфир – это родные братья, это вообще один и тот же минерал – корунд, окись алюминия. Корунд со всеми его разновидностями – это один из самых твердых камней на Земле, самый твердый после алмаза. Корундом можно сверлить, шлифовать, полировать, точить камень и металл. Из корунда и наждака делают точильные круги и бруски, шлифовальные порошки.

Вся часовая промышленность работает на искусственных рубинах. На полупроводниковых заводах тончайшие схемы рисуют рубиновыми иглами.

В текстильной и химической промышленности рубиновые нитеводители вытягивают нити из искусственных волокон, из капрона, из нейлона.

Новая жизнь рубина – это лазер или, как его называют в науке, оптический квантовый генератор (ОКГ), чудесный прибор наших дней. В 1960 г. был создан первый лазер на рубине. Оказалось, что кристалл рубина усиливает свет. Лазер светит ярче тысячи солнц.

Мощный луч лазера обладает громадной мощностью. Он легко прожигает листовой металл, сваривает металлические провода, прожигает стальные трубы, сверлит тончайшие отверстия в твердых сплавах, алмазе. В глазной хирургии также применяются лазеры. Появились и новые лазерные кристаллы: флюорит, гранаты, арсенид галлия и др.

Сапфир прозрачен, поэтому из него делают пластины для оптических приборов.

Основная масса кристаллов сапфира идет в полупроводниковую промышленность.

Кремень, аметист, яшма, опал, халцедон – все это разновидности кварца. Мелкие зернышки кварца образуют песок. А самая красивая, самая чудесная разновидность кварца – это и есть горный хрусталь, т.е. прозрачные кристаллы кварца. Поэтому из прозрачного кварца делают линзы, призмы и др. детали оптических приборов.

Особенно удивительны электрические свойства кварца. Если сжимать или растягивать кристалл кварца, на его гранях возникают электрические заряды. Это – пьезоэлектрический эффект в кристаллах.

В наши дни в качестве пьезоэлектриков используют не только кварц, но и многие другие, в основном искусственно синтезированные вещества.

Пьезоэлектрические кристаллы широко применяются для воспроизведения, записи и передачи звука.

Существуют и пьезоэлектрические методы измерения давления крови в кровеносных сосудах человека и давления соков в стеблях и стволах растений.

В технике также нашел свое применение поликристаллический материал – поляроид.

Поляроид – это тонкая прозрачная пленка, сплошь заполненная крохотными прозрачными игольчатыми кристалликами вещества. Поляроидные пленки применяются в поляроидных очках. Поляроиды гасят блики отраженного света, пропуская весь остальной свет. Они незаменимы для полярников, которым постоянно приходится смотреть на ослепительное отражение солнечных лучей от заледеневшего снежного поля.

Поляроидные стекла помогут предотвратить столкновения встречных автомобилей, которые очень часто случаются из-за того, что огни встречной машины ослепляют водителя, и он не видит этой машины.

Кристаллы сыграли важную роль во многих технических новинках ХХ века.

Полупроводниковые приборы, революционизировавшие электронику, изготавливаются из кристаллических веществ, главным образом кремния и германия. Полупроводниковые диоды используются в компьютерах и системах связи, транзисторы заменили электронные лампы в радиотехнике, а солнечные батареи, помещаемые на наружной поверхности космических летательных аппаратов, преобразуют солнечную энергию в электрическую.

Применение кристаллов в науке и технике Применения кристаллов в науке и технике так многочисленны и разнообразны, что их трудно перечислить.

Алмаз Самый твердый и самый редкий из природных минералов ал маз. Сегодня алмаз в первую очередь камень работник, а не камень украшение.

Благодаря своей исключительной твердости алмаз играет гро мадную роль в технике. Алмазными пилами распиливают камни. Алмазная пила это большой (до 2 х метров в диаметре) вращаю щийся стальной диск, на краях которого сделаны надрезы или за рубки. Мелкий порошок алмаза, смешанный с каким нибудь клей ким веществом, втирают в эти надрезы. Такой диск, вращаясь с большой скоростью, быстро распиливает любой камень.

Колоссальное значение имеет алмаз при бурении горных пород, в горных работах. В граверных инструментах, делительных машинах, аппаратах для испытания твердости, сверлах для камня и металла вставлены алмазные острия. Алмазным порошком шлифуют и полируют твердые камни, за каленную сталь, твердые и сверхтвердые сплавы. Сам алмаз можно резать, шлифовать и гравировать тоже только алмазом. Наиболее от ветственные детали двигателей в автомобильном и авиационном производстве обрабатывают алмазными резцами и сверлами.

Рубин и сапфир относятся к самым красивым и самым дорогим из драгоценных камней. У всех этих камней есть и другие качества, более скромные, но полезные. Кроваво красный рубин и лазарево синий сапфир это родные братья, это вообще один и тот же мине рал корунд, окись алюминия А 12 О 3. Разница в цвете возникла из за очень малых примесей в окиси алюминия: ничтожная добавка хрома превращает бесцветный корунд в кроваво красный рубин, окись ти тана в сапфир. Есть корунды и других цветов. Есть у них ещё со всем скромный, невзрачный брат: бурый, непрозрачный, мелкий ко рунд наждак, которым чистят металл, из которого делают наждач ную шкурку. Корунд со всеми его разновидностями это один из самых твердых камней на Земле, самый твердый после алмаза.

Вся часовая промышленность работает на искусственных руби нах. На полупроводниковых заводах тончайшие схемы рисуют ру биновыми иглами. В текстильной и химической промышленности рубиновые нитеводители вытягивают нити из искусственных воло кон, из капрона, из нейлона.

Мощный луч лазера громадный мощностью. Он легко прожига ет листовой металл, сваривает металлические провода, прожигает металлические трубы, сверлит тончайшие отверстия в твердых спла вах, алмазе. Эти функции выполняет твердый лазер, где использует ся рубин, гранат с неодитом. В глазной хирургии применяется чаще всего неодиновые лазеры и лазеры на рубине. В наземных системах ближнего радиуса действия часто используются инжекционные ла зеры на арсениде галлия.

Кремень, аметист, яшма, опал, халцедон - все это разновидно сти кварца. Мелкие зернышки кварца образуют песок.

А самая кра сивая, самая чудесная разновидность кварца это и есть горный хрусталь, т. е. прозрачные кристаллы кварца. Поэтому из прозрачно го кварца делают линзы, призмы и др. детали оптических приборов. Особенно удивительны электрические свойства кварца. Если сжимать или растягивать кристалл кварца, на его гранях возникают электрические заряды. Это пьезоэлектрический эффект в кристал лах.

В наши дни в качестве пьезоэлектриков используют не только кварц, но и многие другие, в основном искусственно синтезирован ные вещества: синетову соль, титанат бария, дигидрофосфаты калия и аммония (КДР и АДР) и многие другие. Пьезоэлектрические кристаллы широко применяются для вос произведения, записи и передачи звука.

Существуют и пьезоэлектрические методы измерения давления крови в кровеносных сосудах человека и давления соков в стеблях и стволах растений. Пьезоэлектропластинками измеряют, например, давление в стволе артиллерийского орудия при выстреле, давление в момент взрыва бомбы, мгновенные давления в цилиндрах двигате лей при взрыве в них горячих газов.

Эдектрооптическая промышленность это промышленность кристаллов, не имеющих центра симметрии. Эта промышленность очень велика и разнообразна, на её заводах выращивают и обраба тывают сотни наименований кристаллов для применения в оптике, акустике, радиоэлектронике, в лазерной технике.

В технике также нашел своё применение поликристаллический материал поляроид. Поляроид это тонкая прозрачная пленка, сплошь заполненная крохотными прозрачными игольчатыми кристалликами вещества, двупреломляющего и поляризующего свет. Все кристаллики распо ложены параллельно другу, поэтому все они одинаково поляри зуют свет, проходящий через пленку. Поляроидные пленки применяются в поляроидных очках. По ляроиды гасят блики отраженного света, пропуская весь остальной свет. Они незаменимы для полярников, которым постоянно прихо дится смотреть на ослепительное отражение солнечных лучей от за леденевшего снежного поля.

Поляроидные стекла помогут предотвратить столкновения встречных автомобилей, которые очень часто случаются из за того, что огни встречной машины ослепляют шофера, и он не видит этой машины. Если же ветровые стекла автомобилей и стекла автомо бильных фонарей сделать из поляроида, причем повернуть оба поля роида так, чтобы их оптические оси были смещены, то ветровое стекло не пропустит света фонарей встречного автомобиля, "погасит его".

Кристаллы сыграли важную роль во многих технических новинках 20 в. Некоторые кристаллы генерируют электрический заряд при деформации. Первым их значительным применением было изготовление генераторов радиочастоты со стабилизацией кварцевыми кристаллами. Заставив кварцевую пластинку вибрировать в электрическом поле радиочастотного колебательного контура, можно тем самым стабилизировать частоту приема или передачи.

Полупроводниковые приборы, революционизировавшие электронику, изготавливаются из кристаллических веществ, главным образом кремния и германия. При этом важную роль играют легирующие примеси, которые вводятся в кристаллическую решетку. Полупроводниковые диоды используются в компьютерах и системах связи, транзисторы заменили электронные лампы в радиотехнике, а солнечные батареи, помещаемые на наружной поверхности космических летательных аппаратов, преобразуют солнечную энергию в электрическую. Полупроводники широко применяются также в преобразователях переменного тока в постоянный.

Кристаллы используются также в некоторых мазерах для усиления волн СВЧ диапазона и в лазерах для усиления световых волн. Кристаллы, обладающие пьезоэлектрическими свойствами, применяются в радиоприемниках и радиопередатчиках, в головках звукоснимателей и в гидролокаторах. Некоторые кристаллы модулируют световые пучки, а другие генерируют свет под действием приложенного напряжения. Перечень видов применения кристаллов уже достаточно длинен и непрерывно растет.

Живя на Земле, сложенной кристаллическими породами, мы, безусловно, никак не можем отвлечься от проблемы кристалличности: мы ходим по кристаллам, строим из кристаллов, обрабатываем кристаллы на заводах, выращиваем их в лабораториях, широко применяем в технике и науке, едим кристаллы, лечимся ими... Изучением многообразия кристаллов занимается наука кристаллография. Она всесторонне рассматривает кристаллические вещества, исследует их свойства и строение. В давние времена считалось, что кристаллы представляют собой редкость. Действительно, нахождение в природе крупных однородных кристаллов - явление нечастое. Однако мелкокристаллические вещества встречаются весьма часто. Так, например, почти все горные породы: гранит, песчаники, известняк - кристалличны. По мере совершенствования методов исследования кристалличными оказались вещества, до этого считавшиеся аморфными. Сейчас мы знаем, что даже некоторые части организма кристалличны, например, роговица глаза, витамины, мелиновая оболочка нервов - это кристаллы. Долгий путь поисков и открытий, от измерения внешней формы кристаллов в глубь, в тонкости их атомного строения еще не завершен. Но теперь исследователи довольно хорошо изучили его структуру и учатся управлять свойствами кристаллов.

Кристаллы – это красиво, можно сказать чудо какое-то, они притягивают к себе; говорят же "кристальной души человек" о том, в ком чистая душа. Кристальная – значит, сияющая светом, как алмаз … И если говорить о кристаллах с философским настроем, то можно сказать, что это материал, который является промежуточным звеном между живой и неживой материей. Кристаллы могут зарождаться, стареть, разрушаться. Кристалл, когда растет на затравке (на зародыше), наследует дефекты этого самого зародыша. Вообще можно привести множество примеров, настраивающих на такой философский лад, хотя конечно здесь много от лукавого… Например, по телевидению теперь можно услышать о непосредственной связи степени упорядоченности молекул воды со словом, с музыкой и о том, что вода изменяется в зависимости от мыслей, от состояния здоровья наблюдателя. Я не воспринимаю этого всерьез. Вообще-то, шарлатанства и спекуляций около науки много. А молитва опосредована, действует через Духа Святаго и не надо смешивать научный подход и духовные вещи.

Но если говорить совсем серьезно, сейчас пожалуй нельзя назвать ни одну дисциплину, ни одну область науки и техники, которая бы обходилась без кристаллов. Когда я работала, ко мне валом валили медики, показывали почечные камни пациентов: их интересовали среды, в которых кристаллообразование произошло. И фармацевтов много побывало, ведь таблетки – это спрессованные кристаллы. Усвоение, растворение таблеток зависит от того, какими гранями покрыты эти микрокристаллики. Витамины, миелиновая оболочка нервов, белки, и вирусы – это все кристаллы. И наши консультации приносили большое удовлетворение, отвечая на возникающие вопросы….

Кристалл чудодейственен своими свойствами, он выполняет самые разные функции. Эти свойства заложены в его строении, которое имеет решетчатую трехмерную структуру.

Как пример использования кристаллов можно взять кристалл кварца, который используется в телефонных трубках. Если на пластинку из кварца воздействовать механически, то в ней в соответствующем направлении возникнет электрический заряд. В трубке микрофона кварц преобразует механические колебания воздуха, вызванные говорящим, в электрические. Электрические колебания в трубке Вашего абонента преобразуются в колебательные, и, соответственно, он слышит речь.

Будучи решетчатым, кристалл ограняется и каждая грань, как личность, своеобразна. Если грань плотно упакована в решетке материальными частицами (атомами или молекулами), то это очень медленно растущая грань. Например, алмаз. У него грани имеют форму октаэдра, они очень плотно упакованы атомами углерода, и отличаются в силу этого и блеском, и прочностью.

Кристаллография – наука не новая. У её истоков стоит М. В. Ломоносов. А вот выращивание искусственных кристаллов дело более позднее. Популярная книга Шубникова "Образование кристаллов" вышла в 1947 году. Эта научная практика выросла из минералогии, науки о кристаллах и аморфных телах. Выращивание кристаллов стало возможным благодаря изучению данных минералогии о кристаллообразовании в природных условиях. Изучая природу кристаллов, определяли состав, из которого они выросли и условия их роста. И теперь эти процессы имитируют, получая кристаллы с заданными свойствами. В деле получения кристаллов принимают участие химики и физики. Если первые разрабатывают технологию роста, то вторые определяют их свойства. Можно ли искусственные кристаллы отличить от природных? Вот вопрос. Ну, например, искусственный алмаз до сих пор уступает природному по качеству, в том числе и по блеску. Искусственные алмазы не вызывают ювелирной радости, но для использования в технике они вполне подходят, выступают в этом смысле на равных с природными. Опять же, нахрапистые ростовики (так называют химиков, выращивающих искусственные кристаллы) научились выращивать тончайшие кристаллические иглы, обладающие чрезвычайно высокой прочностью. Это достигается манипулированием химизмом среды, температурой, давлением, воздействием некоторых других дополнительных условий. И это уже целое искусство, творчество, мастерство – тут точные науки не помогут, они в этой области работают плохо. Еще покойный академик Николай Васильевич Белов говорил, что искусством выращивать кристалл обладает тот специалист, который тонко чувствует кристалл.

Кристаллы встречаются нам по всюду: мы ходим по кристаллам, строим из них, выращиваем их в лабораториях и в заводских установках, создаём приборы и изделия из кристаллов, широко применяем их в технике и науке, едим кристаллы (поваренную соль), лечимся ими, находим кристаллы в живых организмах, выходим на просторы космических дорог, используя приборы из кристаллов.

Кристаллы являются незаменимыми во многих областях человеческого существования.

Самый твердый и самый редкий из природных минералов - алмаз. За всю историю человечества его добыто всего около 150 т, хотя в мировой алмазодобывающей промышленности сейчас работает почти миллион человек. Сегодня алмаз в первую очередь камень-работник, а не камень-украшение. Около 80% всех добываемых природных алмазов и все искусственные алмазы используются в промышленности. Роль алмазов в современной технике так велика, что, по подсчетам американских экономистов, прекращение применения алмазов привело бы к уменьшению мощности промышленности США вдвое.

Примерно 80% применяемых в технике алмазов идет на заточку инструментов и резцов «сверхтвердых сплавов». Алмазы служат опорными камнями (подшипниками) в хронометрах высшего класса для морских судов и в других особо точных навигационных приборах. На алмазных подшипниках не обнаруживается никаких следов износа даже после 25000000 оборотов.

Несколько уступая алмазу по твердости, соревнуется с ним но разнообразию технических применении рубин. Новая область для широкого применения рубинов в научных исследованиях и в технике открылась с изобретением рубинового лазера - прибора, в котором рубиновый стержень служит мощным источником света, испускаемою в виде тонкого светового луча.

Исключительная роль выпала на долю кристаллов в современной электронике. Большинство полупроводниковых электронных приборов изготовлено из кристаллов германия или кремния.

Опираясь на законы оптики, ученые искали прозрачный бесцветный и бездефектный минерал, из которого можно было бы шлифованием и полированием изготавливать линзы. Нужными оптическими и механическими свойствами обладают кристаллы неокрашенного кварца, и первые линзы, в том числе и для очков, изготавливались из них. Даже после появления искусственного оптического стекла потребность в кристаллах полностью не отпала; кристаллы кварца, кальцита и других прозрачных веществ, пропускающих ультрафиолетовое и инфракрасное излучение, до сих пор применяются для изготовления призм и линз оптических приборов.

Один из способов контроля ответственных деталей механизмов и машин - ультразвуковая дефектоскопия. Главный элемент УЗД дефектоскопа - кварцевая пластинка. Отраженная дефектом звуковая волна создает переменное электрическое поле (Эффект Холла). Пьезоэлектрический эффект в сильной степени проявляется в кристаллах титана, свинца, его производных. Такие кристаллы - основа пьезоэлектрических микрофонов и телефонов. Они преобразуют давление в электродвижущую силу в манометрах, служат для стабилизации частоты радиопередатчиков, измерения механических напряжений и вибраций.

Сегнетоэлектрики - это кристаллические вещества, обладающие уникальными свойствами, например, способностью к самопроизвольной электрической поляризации, которая может возникать даже в отсутствии внешнего поля. Впервые это свойство было обнаружено И.В. Курчатовым и П.П. Кобяко при исследовании кристаллов сегнетовой соли (NaKC4H4O6*4H2О). Сегнетоэлектрики характеризуются анизотропией. Температура, ограничивающая область сегнетоэлектрических свойств - точка Кюри. Причина таких свойств сегнетоэлектриков - взаимодействие входящих в них кристаллы молекул приводит к самопроизвольной поляризации диэлектриков. Важное практическое значение - емкость конденсатора пропорциональна е диэлектрика, помещенного между обкладками. Поэтому, используя диэлектрик с большой е можно получить малогабаритные конденсаторы. В технике применяют сегнетоэлектрические конденсаторы на основе титаната бария, у которого точка Кюри примерно 133°С, диэлектрическая проницаемость е примерно равна 6000 - 7000.

Полупроводниковые кристаллы позволяют создавать сложные электронные полупроводниковые приборы, интегральные схемы. Новая область техники называют твердотельной электроникой.

В 1955 году Басов, Прохоров, Таунсон (США) создали генератор квантов электромагнитного излучения (мазер) сантиметрового диапазона. А в 1960г. Мейманом был запущен первый генератор оптического диапазона. Важнейшую роль в получении лазерного луча играл кристалл рубина (Al2O3) с добавкой хрома. Лазеры нашли широкое применение в промышленности для различных видов обработки материалов, сверление отверстий, сварки тонких изделий. Основная область применения маломощных импульсных лазеров с микроэлектроникой, в электровакуумной промышленности, машиностроении, медицине.

Жидкие кристаллы имеют не менее широкую сферу применения.

В повседневной жизни мы сталкиваемся с часами, термометрами на жидких кристаллах. В наше время наука стала производительной силой, и поэтому, как правило, повышенный научный интерес к тому или иному явлению или объекту означает, что это явление или объект представляет интерес для материального производства. В этом отношении не являются исключением и жидкие кристаллы. Интерес к ним прежде всего обусловлен возможностями их эффективного применения в ряде отраслей производственной деятельности. Внедрение жидких кристаллов означает экономическую эффективность, простоту, удобство.

Многие оптические эффекты в жидких кристаллах, о которых рассказывалось выше, уже освоены техникой и используются в изделиях массового производства. Например, всем известны часы с индикатором на жидких кристаллах, но не все еще знают, что те же жидкие кристаллы используются для производства наручных часов, в которые встроен калькулятор.

Союз микроэлектроники и жидких кристаллов оказывается чрезвычайно эффективным не только в готовом изделии, но и на стадии изготовления интегральных схем. Как известно, одним из этапов производства микросхем является фотолитография, которая состоит в нанесении на поверхность полупроводникового материала специальных масок, а затем в вытравливании с помощью фотографической техники так называемых литографических окон. Эти окна в результате дальнейшего процесса производства преобразуются в элементы и соединения микроэлектронной схемы. От того, насколько малы размеры соответствующих окон, зависит число элементов схемы, которые могут быть размещены на единице площади полупроводника, а от точности и качества вытравливания окон зависит качество микросхемы. Очень полезным оказалось применение жидких кристаллов на стадии контроля качества литографических работ. Для этого на полупроводниковую пластину с протравленными литографическими окнами наносится ориентированный слой нематика, а затем к ней прикладывается электрическое напряжение.

Перспективы же будущих массовых и эффективных применений жидких кристаллов еще более удивительны.

Искусственные кристаллы

С давних пор человек мечтал синтезировать камни, столь же драгоценные, как и встречающиеся в природных условиях. До 20 века такие попытки были безуспешны. Но в 1902 удалось получить рубины и сапфиры, обладающие свойствами природных камней. Сейчас такие минералы производятся миллионами карат ежегодно!

Позднее, в конце 1940-х годов были синтезированы изумруды, а в 1955 фирма «Дженерал электрик» и Физический институт АН СССР сообщили об изготовлении искусственных алмазов.

Многие технологические потребности в кристаллах явились стимулом к исследованию методов выращивания кристаллов с заранее заданными химическими, физическими и электрическими свойствами. Труды исследователей не пропали даром, и были найдены способы выращивания больших кристаллов сотен веществ, многие из которых не имеют природного аналога. В лаборатории кристаллы выращиваются в тщательно контролируемых условиях, обеспечивающих нужные свойства, и лабораторные кристаллы образуются, так же, как и в природе - из раствора, расплава или из паров.

Применение искусственных кристаллов

Применения кристаллов в науке и технике так многочисленны и разнообразны, что их трудно перечислить. Поэтому ограничимся несколькими примерами.

Самый твердый и самый редкий из природных минералов - алмаз. Сегодня алмаз в первую очередь камень-работник, а не камень-украшение. Благодаря своей исключительной твердости алмаз играет громадную роль в технике. Алмазными пилами распиливают камни. Алмазная пила - это большой (до 2-х метров в диаметре) вращающийся стальной диск, на краях которого сделаны надрезы или зарубки. Мелкий порошок алмаза, смешанный с каким-нибудь клейким веществом, втирают в эти надрезы. Такой диск, вращаясь с большой скоростью, быстро распиливает любой камень. Колоссальное значение имеет алмаз при бурении горных пород, в горных работах. Алмазным порошком шлифуют и полируют твердые камни, закаленную сталь. Сам алмаз можно резать, шлифовать и гравировать тоже только алмазом. Наиболее ответственные детали двигателей в автомобильном и авиационном производстве обрабатывают алмазными резцами и сверлами.

Рубин и сапфир относятся к самым красивым и самым дорогим из драгоценных камней. У всех этих камней есть и другие качества, более скромные, но полезные.

Есть у них ещё совсем невзрачный брат: бурый, непрозрачный, мелкий корунд - наждак, которым чистят металл, из которого делают наждачную шкурку. Корунд со всеми его разновидностями - это один из самых твердых камней на Земле, самый твердый после алмаза. Корундом можно сверлить, шлифовать, полировать, точить камень и металл. Из корунда и наждака делают точильные круги и бруски, шлифовальные порошки.

Вся часовая промышленность работает на искусственных рубинах. Новая жизнь рубина - это лазер, чудесный прибор наших дней. В 1960г. был создан первый лазер на рубине. Оказалось, что кристалл рубина усиливает свет. Лазер светит ярче тысячи солнц. Мощный луч - громадный мощностью. Он легко прожигает листовой металл, сваривает металлические провода, прожигает металлические трубы, сверлит тончайшие отверстия в твердых сплавах, алмазе. Эти функции выполняет твердый лазер, где используется рубин и гранат. В глазной хирургии применяется чаще всего лазеры на рубине.

Сапфир прозрачен, поэтому из него делают пластины для оптических приборов.

Кремень, аметист, яшма, опал, халцедон -- все это разновидности кварца. Мелкие зернышки кварца образуют песок. А самая красивая, самая чудесная разновидность кварца - это и есть горный хрусталь, т.е. прозрачные кристаллы кварца. Поэтому из прозрачного кварца делают линзы, призмы и др. детали оптических приборов. Особенно удивительны электрические свойства кварца. Если сжимать или растягивать кристалл кварца, на его гранях возникают электрические заряды.

Также кристаллы широко применяются для воспроизведения, записи и передачи звука.Существуют и кристаллические методы измерения давления крови в кровеносных сосудах человека и давления соков в стеблях и стволах растений. Электрооптическая промышленность - это промышленность кристаллов. Она очень велика и разнообразна, на её заводах выращивают и обрабатывают сотни наименований кристаллов для применения в оптике, акустике, радиоэлектронике, в лазерной технике.

В технике также нашел своё применение поликристаллический материал поляроид. Поляроидные пленки применяются в поляроидных очках. Поляроиды гасят блики отраженного света, пропуская весь остальной свет. Они незаменимы для полярников, которым постоянно приходится смотреть на ослепительное отражение солнечных лучей от заледеневшего снежного поля.

Поляроидные стекла помогут предотвратить столкновения встречных автомобилей, которые очень часто случаются из-за того, что огни встречной машины ослепляют шофера, и он не видит этой машины. Если же ветровые стекла автомобилей и стекла автомобильных фонарей сделать из поляроида, то ветровое стекло не пропустит света фонарей встречного автомобиля, "погасит его".

Загрузка...
Top