Кто ввел понятие атом. Строение атома

Поэтому для нас так важно упорядочить действительность, распределить ее элементы по клеточкам и найти систему. Иначе память отказывается слушаться, а разум - анализировать. Неслучайно в таким важным прорывом считается создание таблицы Менделеева - порядок, система и логика восторжествовали. Влияние этого открытия было так велико, что вдохновило многих. Например, Любищев, гений российского тайм-менеджмента, разработал свою систему для того, чтобы создать периодическую таблицу живых организмов. Цель эта достигнута не была, но сам факт доказывает важность логики для понимания человеком. Но реальность богаче красивых схем. Например, в главной таблице химии некоторые элементы стоят с нарушением порядка по массе. Почему? Ответить можно одним словом - «изотопы». Это слово в буквальном смысле означает «занимающие одно место».

Работали многие, помнят не всех

Таблица Менделеева - плод кропотливого труда многих ученых, а не только ее создателя. Он гениально создал сам принцип и нашел основные закономерности. А вот цифра массы, которую вы видите под каждым элементом - плод работы множества химиков, и кроме того, она неточна. Как так может быть? Возможно, вы когда-либо обращали внимание, что атомный номер - красивое целое число. А вот масса - дробное с огромным количеством знаков после запятой. Почему? А виноваты те же изотопы. Это объясняется довольно просто. Если вы посмотрите на цифры для элемента «азот», возле цифры атомной массы вы увидите 14,0067. Однако если вы «отловите» свободный атом азота, то он может весить и 10, и 25 атомных единиц. Разные они бывают. А в чем эта разница? Масса изотопа состоит из массы протонов и протонов - величина постоянная, именно она делает (азот - азотом). А вот нейтронами атом может быть как богат, так и беден. В примере с азотом их может быть и 18, и всего 3 штуки. Изотопы - это виды атомов элемента в зависимости от количества нейтронов в ядре. У азота встречается 16 изотопов. У некоторых других элементов бывает и больше.

А что делать ученому?

Если бы вы были учеными, как бы вы поступили? Как бы записали массу в таблицу для расчетов? Можно было, конечно, взять среднее арифметическое. Но очень многие изотопы - это объекты весьма нестабильные, часть из них - искусственно созданные. Поэтому неправильно было бы проводить расчеты с ориентацией на неточные данные. Ученые поступили по-другому - они рассчитали атомную массу элемента пропорционально природной распространенности того или иного изотопа. В итоге вероятность того, что при произвольном поиске вам попался именно изотоп в 14 единиц массы, очень велика. Ядро изотопа, найденного случайно, скорее всего, будет содержать 7 протонов и 7 нейтронов.

Причины неточности

Почему же не совсем точна? Потому что вывод о ней сделан индуктивно - от частного к общему. Мы не знаем точный состав Земли под корой, мы не исследовали геологически даже просто всю поверхность Земли. Поэтому цифра атомной массы - вероятностная. Она основана на тех знаниях, которые люди имеют на сегодня. Почему же ученых это удовлетворяет? Потому что большая точность нужна лишь для для банальных расчетов количеств погрешностью можно пренебречь. А вот нарушение порядка по массе объяняется тем, что для химических свойств важно количество заряженных частиц - протонов. И именно по количеству протонов элементы и выстроены последовательно.

Инструкция

Если атом электронейтрален, то число электронов в нем равно числу протонов. Число протонов соответствует атомному элемента в таблице Менделеева. Например, имеет первый атомный номер, поэтому его атом имеет один . Атомный номер натрия - 11, поэтому атом натрия имеет 11 электронов.

Атом также может терять или присоединять . В этом случае атом становится ионом, имеющим электрический положительный или . Допустим, один из электронов натрия покинул электронную оболочку атома. Тогда атом натрия станет положительно заряженным ионом, имеющим заряд +1 и 10 электронов на своей электронной оболочки. При присоединении электронов атом становится отрицательным ионом.

Атомы химических элементов могут также соединяться в молекулы, наименьшую частицу вещества. Количество электронов в молекуле равно количеству электронов всех входящих в нее атомов. Например, молекула воды H2O состоит из двух атомов водорода, каждый из которых имеет по одному электрону, и атома кислорода, который имеет 8 электронов. То есть, в молекуле воды всего 10 электронов.

Атом химического элемента состоит из атомного ядра и электронной оболочки. В состав атомного ядра входят два типа частиц - протоны и нейтроны. Почти вся масса атома сосредоточена в ядре, потому что протоны и нейтроны намного тяжелее электронов.

Вам понадобится

  • атомный номер элемента, N-Z диаграмма.

Инструкция

Нейтроны не имеют электрического заряда, то есть их электрический заряд равен нулю. Это и представляет основную сложность при числа нейтронов - атомный номер элемента или его электронная оболочка не дают однозначного ответа на этот вопрос. Например, в ядре всегда содержится 6 протонов, однако протонов в нем может быть 6 и 7. Разновидности ядер элемента с разным количеством нейтронов в ядре изотопами этого элемента. Изотопы могут быть природными, а могут быть и получены .

Ядра атомов обозначают буквенным символом химического элемента из таблицы Менделеева. Справа от символа вверху и внизу стоят два числа. Верхнее число A - это массовое число атома. A = Z+N, где Z - заряд ядра (число протонов), а N - число нейтронов. Нижнее число - это Z - заряд ядра. Такая запись дает информацию о количестве нейтронов в ядре. Очевидно, что оно равно N = A-Z.

У разных изотопов одного химического элемента число A меняется, что можно увидеть в записи этого изотопа. Определенные изотопы имеют свои оригинальные названия. Например, обычное ядро водорода не имеет нейтронов и имеет один протон. Изотоп водорода дейтерий имеет один нейтрон (A = 2, цифра 2 сверху, 1 снизу), а изотоп тритий - два нейтрона (A = 3, цифра 3 сверху, 1 снизу).

Зависимость числа нейтронов от числа протонов отражена на так называемой N-Z диаграмме атомных ядер. Устойчивость ядер зависит от отношения числа нейтронов и числа протонов. Ядра легких нуклидов наиболее устойчивы при N/Z = 1, то есть при равенстве количества нейтронов и протонов. С ростом массового числа область устойчивости сдвигается к величинам N/Z>1, достигая величины N/Z ~ 1,5 для наиболее тяжелых ядер.

Видео по теме

Источники:

  • Строение атомного ядра
  • как найти количество нейтронов

Атом состоит из ядра и окружающих его электронов, которые вращаются вокруг него по атомным орбиталям и образуют электронные слои (энергетические уровни). Количество отрицательно заряженных частиц на внешних и внутренних уровнях определяет свойства элементов. Число электронов, содержащихся в атоме, можно найти, зная некоторые ключевые моменты.

Вам понадобится

  • - бумага;
  • - ручка;
  • - периодическая система Менделеева.

Инструкция

Чтобы определить количество электронов, воспользуйтесь периодической системой Д.И. Менделеева. В этой таблице элементы расположены в определенной последовательности, которая тесно связана с их атомным строением. Зная, что положительный всегда равен порядковому номеру элемента, вы легко найдете количество отрицательных частиц. Ведь известно - атом в целом нейтрален, а значит, число электронов будет равно числу и номеру элемента в таблице. Например, равен 13. Следовательно, количество электронов у него будет 13, у натрия – 11, у железа – 26 и т.д.

Если вам необходимо найти количество электронов на энергетических уровнях, сначала повторите принцип Пауля и правило Хунда. Потом распределите отрицательные частицы по уровням и подуровням с помощью все той же периодической системы, а точнее ее периодов и групп. Так номер горизонтального ряда (периода) указывает на количество энергетических слоев, а вертикального (группы) – на число электронов на внешнем уровне.

Не забывайте о том, что количество внешних электронов равно номеру группы только у элементов, которые находятся в главных подгруппах. У элементов побочных подгрупп количество отрицательно заряженных частиц на последнем энергетическом уровне не может быть больше двух. Например, у скандия (Sc), находящегося в 4 периоде, в 3 группе, побочной подгруппе, их 2. В то время как у галия (Ga), который находится в том же периоде и той же группе, но в главной подгруппе, внешних электронов 3.

При подсчете электронов в атоме , учтите, что последние образуют молекулы. При этом атомы могут принимать, отдавать отрицательно заряженные частицы или образовывать общую пару. Например, в молекуле водорода (H2) общая пара электронов. Другой случай: в молекуле фторида натрия (NaF) общая сумма электронов будет равна 20. Но в ходе химической реакции атом натрия отдает свой электрон и у него остается 10, а фтор принимает - получается тоже 10.

Полезный совет

Помните, что на внешнем энергетическом уровне может быть только 8 электронов. И это не зависит от положения элемента в таблице Менделеева.

Источники:

  • a так как атом то номер элемента

Атомы состоят из субатомных частиц - протонов, нейтронов и электронов. Протоны представляют собой положительно заряженные частицы, которые находятся в центре атома, в его ядре. Вычислить число протонов изотопа можно по атомному номеру соответствующего химического элемента.

Модель атома

Для описания свойств атома и его структуры используется модель, известная под названием «Модель атома по Бору». В соответствии с ней структура атома напоминает солнечную систему - тяжелый центр (ядро) находится в центре, а более легкие частицы движутся по орбите вокруг него. Нейтроны и протоны образуют положительно заряженное ядро, а отрицательно заряженные электроны движутся вокруг центра, притягиваясь к нему электростатическими силами.

Элементом называют вещество, состоящее из атомов одного типа, он определяется числом протонов в каждом из них. Элементу присваивают свое имя и символ, например, водород (H) или кислород (О). Химические свойства элемента зависят от числа электронов и, соответственно, числа протонов, содержащихся в атомах. Химические характеристики атома не зависят от числа нейтронов, так как не имеют электрического заряда. Однако их число влияет на стабильность ядра, изменяя общую массу атома.

Изотопы и число протонов

Изотопами называют атомы отдельных элементов с различным числом нейтронов. Данные атомы химически идентичным, однако обладают разной массой, также они отличаются своей способностью испускать излучение.

Атомный номер (Z) - это порядковый номер химического элемента в периодической системе Менделеева, он определяется числом протонов в ядре. Каждый атом характеризуется атомным номером и массовым числом (А), которое равно суммарному числу протонов и нейтронов в ядре.

Элемент может иметь атомы с различным числом нейтронов, но количество протонов остается неизменным и равно числу электронов нейтрального атома. Для того, чтобы определить, сколько протонов содержится в ядре изотопа, достаточно посмотреть на его атомный номер. Число протонов равно номеру соответствующего химического элемента в периодической таблице Менделеева.

  • Радиация, Введение в радиационную защиту

Стремление к состоянию с наименьшей энергией является общим свойством материи. Вы наверняка знаете о горных снежных лавинах и камнепадах. Их энергия настолько велика, что может сметать с лица земли мосты, дома и другие крупные и прочные сооружения. Причина этого грозного явления природы в том, что масса снега или камней стремится занять состояние с наименьшей энергией, а потенциальная энергия физического тела у подножья горы меньше, чем на склоне или вершине.

Атомы образуют между собой связи по той же причине: суммарная энергия соединившихся атомов меньше, чем энергия тех же атомов в свободном состоянии. Это очень счастливое для нас с вами обстоятельство – ведь если бы при соединении атомов в молекулы не происходил выигрыш в энергии, то Вселенную заполняли бы только атомы элементов, а появление простых и сложных молекул, необходимых для существования жизни, было бы невозможно.

Однако, атомы не могут связываться друг с другом произвольно. Каждый атом способен связываться с конкретным количеством других атомов, причем связанные атомы располагаются в пространстве строго определенным образом. Причину этих ограничений следует искать в свойствах электронных оболочек атомов, а точнее – в свойствах внешних электронных оболочек, которыми атомы взаимодействуют друг с другом.

Завершенная внешняя электронная оболочка обладает меньшей (т.е. более выгодной для атома) энергией, чем незавершенная. По правилу октета завершенная оболочка содержит 8 электронов:

Таковы внешние электронные оболочки атомов благородных газов, за исключением гелия (n = 1), у которого завершенная оболочка состоит из двух s-электронов (1s 2 ) просто потому, что p-подуровня на 1-м уровне нет.


Внешние оболочки всех элементов, кроме благородных газов, являются НЕЗАВЕРШЕННЫМИ и в процессе химического взаимодействия они по возможности ЗАВЕРШАЮТСЯ.

Чтобы такое "завершение" могло произойти, атомы должны либо передать электроны друг другу, либо предоставить их в общее пользование. Это заставляет атомы находиться рядом друг с другом, т.е. быть связанными химической связью.

Существует несколько терминов для обозначения разновидностей химической связи: ковалентная, полярная ковалентная, ионная, металлическая, донорно-акцепторная, водородная и некоторые другие. Однако, как мы увидим, все способы связывания частиц вещества между собой имеют общую природу – это предоставление собственных электронов в общее пользование (более строго - обобществление электронов), которое часто дополняется электростатическим взаимодействием между разноименными зарядами, возникающими при переходах электронов. Иногда силы притяжения между отдельными частицами могут быть и чисто электростатическими. Это не только притяжение между ионами, но и различные межмолекулярные взаимодействия.

ОПРЕДЕЛЕНИЕ

Атом – наименьшая химическая частица.

Многообразие химических соединений обусловлено различным сочетанием атомов химических элементов в молекулы и немолекулярные вещества. Способность же атома вступать в химические соединения, его химические и физические свойства определяются структурой атома. В связи с этим для химии первостепенное значение имеет внутреннее строение атома и в первую очередь структура его электронной оболочки.

Модели строения атома

В начале XIX века Д. Дальтон возродил атомистическую теорию, опираясь на известные к тому времени основополагающие законы химии (постоянства состава, кратных отношений и эквивалентов). Были проведены первые эксперименты по изучению строения вещества. Однако, несмотря на сделанные открытия (атомы одного и того же элементы обладают одними и теми же свойствами, а атомы других элементов – иными свойствами, введено понятие атомной массы), атом считали неделимым.

После получения экспериментальных доказательств (конец XIX начало XX века) сложности строения атома (фотоэффект, катодные и рентгеновские лучи, радиоактивность) было установлено, что атом состоит из отрицательно и положительно заряженных частиц, которые взаимодействуют между собой.

Эти открытия дали толчок к созданию первых моделей строения атома. Одна из перых моделей была предложена Дж. Томсоном (1904) (рис. 1): атом представлялся как «море положительного электричества» с колеблющимися в нем электронами.

После опытов с α-частицами, в 1911г. Резерфорд предложил так называемую планетарную модель строения атома (рис. 1), похожую на строение солнечной системы. Согласно планеетарной модели, в центре атома находится очень маленькое ядро с зарядом Z е, размеры которого приблизительно в 1000000 раз меньше размеров самого атома. Ядро заключает в себе практически всю массу атома и имеет положительный заряд. Вокруг ядра по орбитам движутся электроны, число которых определяется зарядом ядра. Внешняя траектория движения электронов определяет внешние размеры атома. Диаметр атома составляет 10 -8 см, в то время, как диаметр ядра много меньше -10 -12 см.

Рис. 1 Модели строения атома по Томсону и Резерфорду

Опыты по изучению атомных спектров показали несовершенство планетарной модели строения атома, поскольку эта модель противоречит линейчатой структуре атомных спектров. На основании модели Резерфорда, учении Энштейна о световых квантах и квантовой теории излучения планка Нильс Бор (1913) сформулировал постулаты , в которых заключается теория строения атома (рис. 2): электрон может вращаться вокруг ядра не по любым, а только по некоторым определенным орбитам (стационарным), двигаясь по такой орбите он не излучает электромагнитной энергии, излучение (поглощение или испускание кванта электромагнитной энергии) происходит при переходе (скачкообразном) электрона с одной орбиты на другую.

Рис. 2. Модель строения атома по Н. Бору

Накопленный экспериментальный материал, характеризующий строение атома, показал, что свойства электронов, а также других микрообъектов не могут быть описаны на основе представлений классической механики. Микрочастицы подчиняются законам квантовой механики, которая стала основой для создания современной модели строения атома .

Главные тезисы квантовой механики:

— энергия испускается и поглощается телами отдельными порциями – квантами, следовательно, энергия частиц изменяется скачкообразно;

— электроны и другие микрочастицы имеют двойственную природу – проявляет свойства и частицы, и волны (корпускулярно-волновой дуализм);

— квантовая механика отрицает наличие определенных орбит у микрочастиц (для движущихся электронов невозможно определить точное положение, т.к. они движутся в пространстве вблизи ядра, можно лишь определить вероятность нахождения электрона в различных частях пространства).

Пространство вблизи ядра, в котором достаточно велика вероятность нахождения электрона (90%), называется орбиталью .

Квантовые числа. Принцип Паули. Правила Клечковского

Состояние электрона в атоме можно описать с помощью четырех квантовых чисел .

n – главное квантовое число. Характеризует общий запас энергии электрона в атоме и номер энергетического уровня. nприобретает целочисленные значения от 1 до ∞. Наименьшей энергией электрон обладает при n=1; с увеличением n – энергия . Состояние атома, когда его электроны находятся на таких энергетических уровнях, что их суммарная энергия минимальна, называется основным. Состояния с более высокими значениями называются возбужденными. Энергетические уровни обозначаются арабскими цифрами в соответствии со значением n. Электроны можно расположить по семи уровням, поэтому, реально n существует от 1 до 7. Главное квантовое число определяет размеры электронного облака и определяет средний радиус нахождения электрона в атоме.

l – орбитальное квантовое число. Характеризует запас энергии электронов в подуровне и форму орбитали (табл. 1). Принимает целочисленные значения от 0 до n-1. l зависит от n. Если n=1,то l=0, что говорит о том, что на 1-м уровне 1-н подуровень.


m e – магнитное квантовое число. Характеризует ориентацию орбитали в пространстве. Принимает целочисленные значения от –l через 0 до +l. Так, при l=1 (p-орбиталь), m e принимает значения -1, 0, 1 и ориентация орбитали может быть различной (рис. 3).

Рис. 3. Одна из возможных ориентаций в пространстве p-орбитали

s – спиновое квантовое число. Характеризует собственное вращение электрона вокруг оси. Принимает значения -1/2(↓) и +1/2 (). Два электрона на одной орбитали обладают антипараллельными спинами.

Состояние электронов в атомах определяется принципом Паули : в атоме не может быть двух электронов с одинаковым набором всех квантовых чисел. Последовательность заполнения орбиталей электронами определяется правилами Клечковского : орбитали заполняются электронами в порядке возрастания суммы (n+l) для этих орбиталей, если сумма (n+l) одинакова, то первой заполняется орбиталь с меньшим значением n.

Однако, в атоме обычно присутствуют не один, а несколько электронов и, чтобы учесть их взаимодействие друг с другом используют понятие эффективного заряда ядра – на электрон внешнего уровня действует заряд, меньший заряда ядра, вследствие чего внутренние электроны экранируют внешние.

Основные характеристики атома: атомный радиус (ковалентный, металлический, ван-дер-ваальсов, ионный), сродство к электрону, потенциал ионизации, магнитный момент.

Электронные формулы атомов

Все электроны атома образуют его электронную оболочку. Строение электронной оболочки изображается электронной формулой , которая показывает распределение электронов по энергетическим уровням и подуровням. Число электронов на подуровне обозначается цифрой, которая записывается справа вверху от буквы, показывающей подуровень. Например, атом водорода имеет один электрон, который расположен на s-подуровне 1-го энергетического уровня: 1s 1 . Электронная формула гелия, содержащего два электрона записывается так: 1s 2 .

У элементов второго периода электроны заполняют 2-й энергетический уровень, на котором могут находиться не более 8-ми электронов. Вначале электроны заполняют s-подуровень, потом – p-подуровень. Например:

5 B 1s 2 2s 2 2p 1

Связь электронного строения атома с положением элемента в Периодической системе

Электронную формулу элемента определяют по его положению в Периодической системе Д.И. Менделеева. Так, номер периода соответствует У элементов второго периода электроны заполняют 2-й энергетический уровень, на котором могут находиться не более 8-ми электронов. Вначале электроны заполняют У элементов второго периода электроны заполняют 2-й энергетический уровень, на котором могут находиться не более 8-ми электронов. Вначале электроны заполняют s-подуровень, потом – p-подуровень. Например:

5 B 1s 2 2s 2 2p 1

У атомов некоторых элементов, наблюдается явление «проскока» электрона с внешнего энергетического уровня на предпоследний. Проскок электрона происходит у атомов меди, хрома, палладия и некоторых других элементов. Например:

24 Cr 1s 2 2s 2 2p 6 3s 2 3p 6 3d 5 4s 1

энергетический уровень, на котором могут находиться не более 8-ми электронов. Вначале электроны заполняют s-подуровень, потом – p-подуровень. Например:

5 B 1s 2 2s 2 2p 1

Номер группы для элементов главных подгрупп равен числу электронов на внешнем энергетическом уровне, такие электроны называют валентными (они участвуют в образовании химической связи). Валентными электронами у элементов побочных подгрупп могут быть электроны внешнего энергетического уровня и d-подуровня предпоследнего уровня. Номер группы элементов побочных подгрупп III-VII групп, а также у Fe, Ru, Os соответствует общему числу электронов на s-подуровне внешнего энергетического уровня и d-подуровне предпоследнего уровня

Задания:

Изобразите электронные формулы атомов фосфора, рубидия и циркония. Укажите валентные электроны.

Ответ:

15 P 1s 2 2s 2 2p 6 3s 2 3p 3 Валентные электроны 3s 2 3p 3

37 Rb 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 5s 1 Валентные электроны 5s 1

40 Zr 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 4d 2 5s 2 Валентные электроны 4d 2 5s 2

Атом - это мельчайшая частица химического вещества, которая способна сохранять его свойства. Слово «атом» происходит от древнегреческого «atomos», что означает «неделимый». В зависимости о того, сколько и каких частиц находится в атоме, можно определить химический элемент .

Кратко о строении атома

Как можно вкратце перечислить основные сведения о является частицей с одним ядром, которое заряжено положительно. Вокруг этого ядра расположено отрицательно заряженное облако из электронов. Каждый атом в своем обычном состоянии является нейтральным. Размер этой частицы полностью может быть определен размером электронного облака, которое окружает ядро.

Само ядро, в свою очередь, тоже состоит из более мелких частиц - протонов и нейтронов. Протоны являются положительно заряженными. Нейтроны не несут в себе никакого заряда. Однако протоны вместе с нейтронами объединяются в одну категорию и носят название нуклонов. Если необходимы основные сведения о строении атома кратко, то эта информация может быть ограничена перечисленными данными .

Первые сведения об атоме

О том же, что материя может состоять из мелких частиц, подозревали еще древние греки. Они полагали, что все существующее и состоит из атомов. Однако такое воззрение носило чисто философский характер и не может быть трактовано научно.

Первым основные сведения о строении атома получил английский ученый Именно этот исследователь сумел обнаружить, что два химических элемента могут вступать в различные соотношения, и при этом каждая такая комбинация будет представлять собой новое вещество. Например, восемь частей элемента кислорода порождают собой углекислый газ. Четыре части кислорода - угарный газ.

В 1803 году Дальтон открыл так называемый закон кратных отношений в химии. При помощи косвенных измерений (так как ни один атом тогда не мог быть рассмотрен под тогдашними микроскопами) Дальтон сделал вывод об относительном весе атомов .

Исследования Резерфорда

Почти столетие спустя основные сведения о строении атомов были подтверждены еще одним английским химиком - Ученый предложил модель электронной оболочки мельчайших частиц.

На тот момент названная Резерфордом «Планетарная модель атома» была одним из важнейших шагов, которые могла сделать химия. Основные сведения о строении атома свидетельствовали о том, что он похож на Солнечную систему: вокруг ядра по строго определенным орбитам вращаются частицы-электроны, подобно тому, как это делают планеты.

Электронная оболочка атомов и формулы атомов химических элементов

Электронная оболочка каждого из атомов содержит ровно столько электронов, сколько находится в его ядре протонов. Именно поэтому атом является нейтральным. В 1913 году еще один ученый получил основные сведения о строении атома. Формула Нильса Бора была похожа на ту, что получил Резерфорд. Согласно его концепции, электроны также вращаются вокруг ядра, расположенного в центре. Бор доработал теорию Резерфорда, внес стройность в ее факты.

Уже тогда были составлены формулы некоторых химических веществ. Например, схематически строение атома азота обозначается как 1s 2 2s 2 2p 3 , строение атома натрия выражается формулой 1s 2 2s 2 2p 6 3s 1 . Через эти формулы можно увидеть, какое количество электронов движется по каждой из орбиталей того или иного химического вещества.

Модель Шредингера

Однако затем и эта атомная модель устарела. Основные сведения о строении атома, известные науке сегодня, во многом стали доступны благодаря исследованиям австрийского физика

Он предложил новую модель его строения - волновую. К этому времени ученые уже доказали, что электрон наделен не только природой частицы, но обладает свойствами волны.

Однако у модели Шредингера и Резерфорда имеются и общие положения. Их теории сходны в том, что электроны существуют на определенных уровнях.

Такие уровни также называются электронными слоями. При помощи номера уровня может быть охарактеризована энергия электрона. Чем выше слой, тем большей энергией он обладает. Все уровни считаются снизу вверх, таким образом, номер уровня соответствует его энергии. Каждый из слоев в электронной оболочке атома имеет свои подуровни. При этом у первого уровня может быть один подуровень, у второго - два, у третьего - три и так далее (см. приведенные выше электронные формулы азота и натрия).

Еще более мелкие частицы

На данный момент, конечно, открыты еще более мелкие частицы, нежели электрон, протон и нейтрон. Известно, что протон состоит из кварков. Существуют и еще более мелкие частицы мироздания - например, нейтрино, который по своим размерам в сто раз меньше кварка и в миллиард раз меньше протона.

Нейтрино - это настолько мелкая частица, что она в 10 септиллионов раз меньше, чем, к примеру, тираннозавр. Сам тираннозавр во столько же раз меньших размеров, чем вся обозримая Вселенная.

Основные сведения о строении атома: радиоактивность

Всегда было известно, что ни одна химическая реакция не может превратить один элемент в другой. Но в процессе радиоактивного излучения это происходит самопроизвольно.

Радиоактивностью называют способность ядер атомов превращаться в другие ядра - более устойчивые. Когда люди получили основные сведения о строении атомов, изотопы в определенной мере могли служить воплощением мечтаний средневековых алхимиков.

В процессе распада изотопов испускается радиоактивное излучение. Впервые такое явление было обнаружено Беккерелем. Главный вид радиоактивного излучения - это альфа-распад. При нем происходит выброс альфа-частицы. Также существует бета-распад, при котором из ядра атома выбрасывается, соответственно, бета-частица.

Природные и искусственные изотопы

В настоящее время известно порядка 40 природных изотопов. Их большая часть расположена в трех категориях: урана-радия, тория и актиния. Все эти изотопы можно встретить в природе - в горных породах, почве, воздухе. Но помимо них, известно также порядка тысячи искусственно выведенных изотопов, которые получают в ядерных реакторах. Многие их таких изотопов используются в медицине, особенно в диагностике .

Пропорции внутри атома

Если представить себе атом, размеры которого будут сопоставимы с размерами международного спортивного стадиона, тогда можно визуально получить следующие пропорции. Электроны атома на таком «стадионе» будут располагаться на самом верху трибун. Каждый из них будет иметь размеры меньше, чем булавочная головка. Тогда ядро будет расположено в центре этого поля, а его размер будет не больше, чем размер горошины.

Иногда люди задают вопрос, как в действительности выглядит атом. На самом деле он в буквальном смысле слова не выглядит никак - не по той причине, что в науке используются недостаточно хорошие микроскопы. Размеры атома находятся в тех областях, где понятие «видимости» просто не существует.

Атомы обладают очень малыми размерами. Но насколько малы в действительности эти размеры? Факт состоит в том, что самая маленькая, едва различимая человеческим глазом крупица соли содержит в себе порядка одного квинтиллиона атомов.

Если же представить себе атом такого размера, который мог бы уместиться в человеческую руку, то тогда рядом с ним находились бы вирусы 300-метровой длины. Бактерии имели бы длину 3 км, а толщина человеческого волоса стала бы равна 150 км. В лежачем положении он смог бы выходить за границы земной атмосферы. А если бы такие пропорции были действительны, то человеческий волос в длину смог бы достигать Луны. Вот такой он непростой и интересный атом, изучением которого ученые продолжают заниматься и по сей день.

Загрузка...
Top