Затухающие колебания. Декремент затухания

1.21. 3АТУХАЮЩИЕ, ВЫНУЖДЕННЫЕ КОЛЕБАНИЯ

Дифференциальное уравнение затухающих колебаний и его решение. Коэффициент затухания. Логарифмический дек ремент затухания. Добротность колеба тельной системы. Апериодический процесс. Дифференциальное уравнение вынужденных колебаний и его решение. Амплитуда и фаза вынужденных колебаний. Процесс установления колебаний. Случай резонанса. Автоколебания.

Затуханием колебаний называется постепенное уменьшение амплитуды колебаний с течением времени, обусловленное потерей энергии колебательной системой.

Собственные колебания без затухания – это идеализация. Причины затухания могут быть разные. В механической системе к затуханию колебаний приводит наличие трения. Когда израсходуется вся энергия, запасенная в колебательной системе, колебания прекратятся. Поэтому амплитуда затухающих колебаний уменьшается, пока не станет равной нулю.

Затухающие колебания, как и собственные, в системах, разных по своей природе, можно рассматривать с единой точки зрения – общих признаков. Однако, такие характеристики, как амплитуда и период, требуют переопределения, а другие – дополнения и уточнения по сравнению с такими же признаками для собственных незатухающих колебаний. Общие признаки и понятия затухающих колебаний следующие:

    Дифференциальное уравнение должно быть получено с учетом убывания в процессе колебаний колебательной энергии.

    Уравнение колебаний – решение дифференциального уравнения.

    Амплитуда затухающих колебаний зависит от времени.

    Частота и период зависят от степени затухания колебаний.

    Фаза и начальная фаза имеют тот же смысл, что и для незатухающих колебаний.

Механические затухающие колебания.

Механическая система : пружинный маятник с учетом сил трения.

Силы, действующие на маятник :

Упругая сила. , где k – коэффициент жесткости пружины, х – смещение маятника от положения равновесия.

Сила сопротивления . Рассмотрим силу сопротивления, пропорциональную скорости v движения (такая зависимость характерна для большого класса сил сопротивления): . Знак “минус” показывает, что направление силы сопротивления противоположно направлению скорости движения тела. Коэффициент сопротивления r численно равен силе сопротивления, возникающей при единичной скорости движения тела:

Закон движения пружинного маятника – это второй закон Ньютона:

ma = F упр. + F сопр.

Учитывая, что и , запишем второй закон Ньютона в виде:

. (21.1)

Разделив все члены уравнения на m, перенеся их все в правую часть, получим дифференциальное уравнение затухающих колебаний:

Обозначим , где β коэффициент затухания , , где ω 0 – частота незатухающих свободных колебаний в отсутствии потерь энергии в колебательной системе.

В новых обозначениях дифференциальное уравнение затухающих колебаний имеет вид:

. (21.2)

Это линейное дифференциальное уравнение второго порядка.

Это линейное дифференциальное уравнение решается заменой переменных. Представим функцию х, зависящую от времени t, в виде:

.

Найдем первую и вторую производную этой функции от времени, учитывая, что функция z также является функцией времени:

, .

Подставим выражения в дифференциальное уравнение:

Приведем подобные члены в уравнении и сократим каждый член на , получим уравнение:

.

Обозначим величину .

Решением уравнения являются функции , .

Возвращаясь к переменной х, получим формулы уравнений затухающих колебаний:

Таким образом, уравнение затухающих колебаний есть решение дифференциального уравнения (21.2):

Частота затухающих колебаний :

(физический смысл имеет только вещественный корень, поэтому ).

Период затухающих колебаний :

(21.5)

Смысл, который вкладывался в понятие периода для незатухающих колебаний, не подходит для затухающих колебаний, так как колебательная система никогда не возвращается в исходное состояние из-за потерь колебательной энергии. При наличии трения колебания идут медленнее: .

Периодом затухающих колебаний называется минимальный промежуток времени, за который система проходит дважды положение равновесия в одном направлении.

Для механической системы пружинного маятника имеем:

, .

Амплитуда затухающих колебаний :

Для пружинного маятника .

Амплитуда затухающих колебаний – величина не постоянная, а изменяющаяся со временем тем быстрее, чем больше коэффициент β. Поэтому определение для амплитуды, данное ранее для незатухающих свободных колебаний, для затухающих колебаний надо изменить.

При небольших затуханиях амплитудой затухающих колебаний называется наибольшее отклонение от положения равновесия за период.

Графики зависимости смещения от времени и амплитуды от времени представлены на Рисунках 21.1 и 21.2.

Рисунок 21.1 – Зависимость смещения от времени для затухающих колебаний.

Рисунок 21.2 – Зависимости амплитуды от времени для затухающих колебаний

Характеристики затухающих колебаний.

1. Коэффициент затухания β .

Изменение амплитуды затухающих колебаний происходит по экспоненциальному закону:

Пусть за время τ амплитуда колебаний уменьшится в “e ” раз (“е” – основание натурального логарифма, е ≈ 2,718). Тогда, с одной стороны, , а с другой стороны, расписав амплитуды А зат. (t) и А зат. (t+τ), имеем . Из этих соотношений следует βτ = 1, отсюда .

Промежуток времени τ , за который амплитуда уменьшается в “е” раз, называется временем релаксации.

Коэффициент затухания β – величина, обратно пропорциональная времени релаксации.

2. Логарифмический декремент затухания δ - физическая величина, численно равная натуральному логарифму отношения двух последовательных амплитуд, отстоящих по времени на период.

Если затухание невелико, т.е. величина β мала, то амплитуда незначительно изменяется за период, и логарифмический декремент можно определить так:

,

где А зат. (t) и А зат. (t+NT) – амплитуды колебаний в момент времени е и через N периодов, т.е.в момент времени (t + NT).

3. Добротность Q колебательной системы – безразмерная физическая величина, равная произведению величины (2π) νа отношение энергии W(t) системы в произвольный момент времени к убыли энергии за один период затухающих колебаний:

.

Так как энергия пропорциональна квадрату амплитуды, то

При малых значениях логарифмического декремента δ добротность колебательной системы равна

,

где N e – число колебаний, за которое амплитуда уменьшается в “е” раз.

Так, добротность пружинного маятника - .Чем больше добротность колебательной системы, тем меньше затухание, тем дольше будет длиться периодический процесс в такой системе. Добротность колебательной системы - безразмерная величина, которая характеризует диссипацию энергии во времени.

4. При увеличении коэффициента β, частота затухающих колебаний уменьшается, а период увеличивается. При ω 0 = β частота затухающих колебаний становится равной нулю ω зат. = 0, а Т зат. = ∞. При этом колебания теряют периодический характер и называются апериодическими.

При ω 0 = β параметры системы, ответственные за убывание колебательной энергии, принимают значения, называемые критическими . Для пружинного маятника условие ω 0 = β запишется так:, откуда найдем величину критического коэффициента сопротивления:

.

Рис. 21.3. Зависимсть амплитуды апериодических колебаний от времени

Вынужденные колебания.

Все реальные колебания являются затухающими. Чтобы реальные колебания происходили достаточно долго нужно периодически пополнять энергию колебательной системы, действуя на нее внешней периодически изменяющейся силой

Рассмотрим явление колебаний, если внешняя (вынуждающая) сила изменяется в зависимости от времени по гармоническому закону. При этом в системах возникнут колебания, характер которых в той или иной мере повторит характер вынуждающей силы. Такие колебания называются вынужденными .

Общие признаки вынужденных механических колебаний.

1. Рассмотрим вынужденные механические колебаний пружинного маятника, на который действует внешняя (вынуждающая ) периодическая сила . Силы, которые действуют на маятник, однажды выведенный из положения равновесия, развиваются в самой колебательной системе. Это сила упругости и сила сопротивления .

Закон движения (второй закон Ньютона) запишется следующим образом:

(21.6)

Разделим обе части уравнения на m, учтем, что , и получим дифференциальное уравнение вынужденных колебаний:

Обозначим (β коэффициент затухания ), (ω 0 – частота незатухающих свободных колебаний), сила, действующая на единицу массы. В этих обозначениях дифференциальное уравнение вынужденных колебаний примет вид:

(21.7)

Это дифференциальное уравнение второго порядка с правой частью, отличной от нуля. Решение такого уравнения есть сумма двух решений

.

–общее решение однородного дифференциального уравнения, т.е. дифференциального уравнения без правой части, когда она равна нулю. Такое решение нам известно – это уравнение затухающих колебаний, записанное с точностью до постоянной, значение которой определяется начальными условиями колебательной системы:

Где .

Мы обсуждали ранее, что решение может быть записано через функции синуса.

Если рассматривать процесс колебаний маятника через достаточно большой промежуток времени Δt после включения вынуждающей силы (Рисунок 21.2), то затухающие колебания в системе практически прекратятся. И тогда решением дифференциального уравнения с правой частью будет решение .

Решение - это частное решение неоднородного дифференциального уравнения, т.е. уравнения с правой частью. Из теории дифференциальных уравнений известно, что при правой части, изменяющейся по гармоническому закону, решение будет гармонической функцией (sin или cos) с частотой изменения, соответствующей частоте Ω изменения правой части:

где А ампл. – амплитуда вынужденных колебаний, φ 0 –сдвиг фаз , т.е. разность фаз между фазой вынуждающей силы и фазой вынужденных колебаний. И амплитуда А ампл. , и сдвиг фаз φ 0 зависят от параметров системы (β, ω 0) и от частоты вынуждающей силы Ω.

Период вынужденных колебаний равен (21.9)

График вынужденных колебаний на Рисунке 4.1.

Рис.21.3. График вынужденных колебаний

Установившиеся вынужденные колебания являются так же гармоническими.

Зависимости амплитуды вынужденных колебаний и сдвига фаз от частоты внешнего воздействия. Резонанс.

1. Вернемся к механической системе пружинного маятника, на который действует внешняя сила, изменяющаяся по гармоническому закону. Для такой системы дифференциальное уравнение и его решение соответственно имеют вид:

, .

Проанализируем зависимость амплитуды колебаний и сдвига фаз от частоты внешней вынуждающей силы, для этого найдем первую и вторую производную от х и подставим в дифференциальное уравнение.

Воспользуемся методом векторной диаграммы. Из уравнения видно, что сумма трех колебаний в левой части уравнения (Рисунок 4.1) должна быть равна колебанию в правой части. Векторная диаграмма выполнена для произвольного момента времени t. Из нее можно определить .

Рисунок 21.4.

, (21.10)

. (21.11)

Учитывая значение , ,, получим формулы для φ 0 и А ампл. механической системы:

,

.

2. Исследуем зависимость амплитуды вынужденных колебаний от частоты вынуждающей силы и величины силы сопротивления в колеблющейся механической системе, по этим данным построим график . Результаты исследования отражены в Рисунке 21.5, по ним видно, что при некоторой частоте вынуждающей силы амплитуда колебаний резко возрастает. И это возрастание тем больше, чем меньше коэффициент затухания β. При амплитуда колебаний становится бесконечно большой .

Явление резкого возрастания амплитуды вынужденных колебаний при частоте вынуждающей силы, равной , называется резонансом.

(21.12)

Кривые на Рисунке 21.5 отражают зависимость и называются амплитудными резонансными кривыми .

Рисунок 21.5 – Графики зависимости амплитуды вынужденных колебаний от частоты вынуждающей силы.

Амплитуда резогансных колебаний примет вид:

Вынужденные колебания – это незатухающие колебания. Неизбежные потери энергии на трение компенсируются подводом энергии от внешнего источника периодически действующей силы. Существуют системы, в которых незатухающие колебания возникают не за счет периодического внешнего воздействия, а в результате имеющейся у таких систем способности самой регулировать поступление энергии от постоянного источника. Такие системы называются автоколебательными , а процесс незатухающих колебаний в таких системах – автоколебаниями .

В автоколебательной системе можно выделить три характерных элемента – колебательная система, источник энергии и устройство обратной связи между колебательной системой и источником. В качестве колебательной системы может быть использована любая механическая система, способная совершать собственные затухающие колебания (например, маятник настенных часов).

Источником энергии может служить энергия деформация пружины или потенциальная энергия груза в поле тяжести. Устройство обратной связи представляет собой некоторый механизм, с помощью которого автоколебательная система регулирует поступление энергии от источника. На рис. 21.6 изображена схема взаимодействия различных элементов автоколебательной системы.

Примером механической автоколебательной системы может служить часовой механизм с анкерным ходом (рис. 21.7.). Ходовое колесо с косыми зубьями жестко скреплено с зубчатым барабаном, через который перекинута цепочка с гирей. На верхнем конце маятника закреплен анкер (якорек) с двумя пластинками из твердого материала, изогнутыми по дуге окружности с центром на оси маятника. В ручных часах гиря заменяется пружиной, а маятник – балансиром – маховичком, скрепленным со спиральной пружиной.

Рисунок 21.7. Часовой механизм с маятником.

Балансир совершает крутильные колебания вокруг своей оси. Колебательной системой в часах является маятник или балансир. Источником энергии – поднятая вверх гиря или заведенная пружина. Устройством, с помощью которого осуществляется обратная связь, является анкер, позволяющий ходовому колесу повернуться на один зубец за один полупериод.

Обратная связь осуществляется взаимодействием анкера с ходовым колесом. При каждом колебании маятника зубец ходового колеса толкает анкерную вилку в направлении движения маятника, передавая ему некоторую порцию энергии, которая компенсирует потери энергии на трение. Таким образом, потенциальная энергия гири (или закрученной пружины) постепенно, отдельными порциями передается маятнику.

Механические автоколебательные системы широко распространены в окружающей нас жизни и в технике. Автоколебания совершают паровые машины, двигатели внутреннего сгорания, электрические звонки, струны смычковых музыкальных инструментов, воздушные столбы в трубах духовых инструментов, голосовые связки при разговоре или пении и т. д.

Механическое движение всегда сопровождается трением. Трение приводит к рассеянию (диссипации) механической энергии. Диссипация энергии имеется в любых не идеализированных колебательных системах, она вызывает затухание собственных колебаний.

Определение

Затухающими колебаниями называют колебания, амплитуда которых постепенно уменьшается со временем из-за потерь энергии колебательной системой.

Уравнение колебаний пружинного маятника с затуханием

Иногда, если тело движется в веществе, силу сопротивления (${\overline{F}}_{tr}$), которая действует на рассматриваемое тело, при маленьких скоростях его движения, считают прямо пропорциональной скорости ($\overline{v}$):

\[{\overline{F}}_{tr}=-\beta \overline{v}\left(1\right),\]

где $\beta $ - коэффициент сопротивления.

Данную силу учитывают в уравнении второго закона Ньютона при описании движения. Так, уравнение, которое описывает линейные колебания по вертикали (колебания по оси X) пружинного маятника, учитывающее силу трения принимает вид:

где $\dot{x}=v_x.$ Принимая во внимание равенства:

\[{\omega }^2_0=\frac{k}{m};;2\gamma =\frac{\beta }{m}\left(3\right),\]

(где ${\omega }_0$- циклическая частота свободных незатухающих колебаний (собственная частота колебаний при $\gamma $=0) той же колебательной системы; $\gamma $ - коэффициент затухания) уравнение колебаний пружинного маятника с затуханием (2) преобразуем к виду:

\[\ddot{x}+2\gamma \dot{x}+{\omega }^2_0x=0\ \left(4\right).\]

Малые собственные колебания, затухающие вследствие сопротивления среды в любой физической системе (математический маятник, физический маятник, электрические колебания...) описывают при помощи уравнения формы (4).

Уравнение затухающих колебаний имеет точное решение:

где $\omega =\sqrt{{\omega }^2_0-{\gamma }^2}$; $A_0$ - начальная амплитуда колебаний, задаваемая начальными условиями; $\varphi $ - постоянная из начальных условий. При $\gamma \ll {\omega }_0$, $\omega \approx {\omega }_0$, параметр $A_0e^{-\gamma t}$ можно считать медленно изменяющейся во времени амплитудой колебаний.

Затухание колебаний по экспоненте связано с тем, что силу сопротивления мы приняли пропорциональной скорости. Если использовать другую зависимость силы трения от скорости, то закон затухания изменится.

Диссипация энергии при затухающих колебаниях

Пусть затухание мало, при этом потеря энергии колебательной системой за один период много меньше, чем энергия колебаний.

Рассеяние энергии за период колебаний происходит не равномерно, ввиду осцилляции кинетической энергии ($E_k$). Уравнение убывания энергии при затухающих колебаниях будет иметь вид:

\[\frac{dE}{dt}=-\frac{2\beta }{m}\left\langle E_k\right\rangle \left(6\right),\]

где $\frac{dE}{dt}$ - скорость изменения энергии колебаний; $\left\langle E_k\right\rangle $ - средняя величина кинетической энергии за период колебаний. Уравнение (6) не применяют для промежутков времени, которые меньше периода колебаний.

Так как мы считаем затухание малым, то $\left\langle E_k\right\rangle $ можно принять равным (как при свободных колебаниях) половине полной энергии осциллятора:

\[\left\langle E_k\right\rangle =\frac{E}{2}\left(7\right).\]

В таком случае уравнение (6) можно записать в виде:

\[\frac{dE}{dt}=-2\gamma E\ \left(8\right).\]

Выражение (8) отображает «сглаженное» поведение энергии колебаний (в случае, если детали изменения энергии за один период колебаний не интересны). Оно показывает, что скорость изменения энергии пропорциональна самой энергии. Решением уравнения (8) является функция:

где $E_0$ - величина энергии колебательной системы в начальный момент времени.

Так как энергия колебаний пропорциональна квадрату амплитуды ($E\sim A^2$), изменение амплитуды колебаний за большие отрезки времени (в сравнении с периодом колебаний) запишем в виде функции:

$A_0$ - начальная амплитуда колебаний.

Время жизни колебаний. Период затухающих колебаний. Декремент затухания

Из формулы (10) видно, что амплитуда затухающих колебаний убывает по экспоненте. За время $\tau =\frac{1}{\gamma }$ амплитуда убывает в $e$ раз и это не зависит от $A_0$. Время $\tau $ в этом случае называют временем жизни колебаний (или временем релаксации) (не смотря на то, что в соответствии с выражением (9) колебания должны длиться бесконечно). Тезис о малости затухания означает, что время жизни колебаний не бесконечно, а много больше, чем их период ($\tau \gg T$). За время жизни происходит много колебательных движений.

Строго говоря, затухающие колебания не являются строго периодическими движениями. Периодом в данном случае считают промежуток времени между двумя последовательными максимальными отклонениями от положения равновесия.

Период затухающих колебаний считают равным:

Пусть $A\left(t\right)\ и\ A(t+T)$ - амплитуды двух последовательных колебаний, моменты времени которых отличаются на период. Отношение этих амплитуд, следуя (10) равно:

\[\frac{A\left(t\right)}{A(t+T)}=e^{\gamma T}(12)\]

называют декрементом затухания. Натуральный логарифм декремента затухания ($\theta $):

\[\theta ={\ln \left(\frac{A\left(t\right)}{A\left(t+T\right)}\right)\ }=\gamma T=\frac{T}{\tau }=\frac{1}{N_e}(13)\]

называют логарифмическим декрементом затухания. Для колебательной системы $\theta $ постоянная величина.

Примеры задач с решением

Пример 1

Задание. Каков коэффициент затухания маятника ($\gamma $), если за $\Delta t$ амплитуда его колебаний уменьшилась в $n$ раз?

Решение. За основу решения задачи примем уравнение затухающих колебаний в виде:

По условию задачи имеем:

\[\frac{A_1}{A_2}=n.\]

С другой стороны:

где $t_2-t_1=\Delta t$. Найдем натуральный логарифм от правой и левой части выражения (1.2), получим:

\[{\ln \left(\frac{A_1}{A_2}\right)\ }=\gamma \Delta t\left(1.3\right).\]

Выразим $\gamma $ из (1.3) учтем, что $\frac{A_1}{A_2}=n$:

\[\gamma =\frac{{\ln \left(\frac{A_1}{A_2}\right)\ }}{\Delta t}=\gamma =\frac{{\ln n\ }}{\Delta t}.\]

Ответ. $\gamma =\frac{{\ln n\ }}{\Delta t}$

Пример 2

Задание. Что представляет собой фазовая траектория затухающего колебания?

Решение. Фазовой траекторией называют траекторию движения в плоскости $\left(x;;v\right).$ По оси абсцисс откладывается отклонение $x$, по оси ординат откладывают скорость $v$. Каждому движению в момент времени $t$ соответствует изображающая точка, на указанной плоскости координаты ее $\left(x,v\right),$ они однозначно определены мгновенными значениями отклонения и скорости. Точка со временем движется и описывает траекторию (рис.1). В данном случае время выступает как параметр, уравнение фазовой траектории задет функция:

Фазовая траектория затухающего колебания, если

\[{\overline{F}}_{tr}=-\beta \overline{v}\left(2.2\right),\]

представляет собой незамкнутую спираль, которая закручивается вокруг начала координат (рис.1). Если затухание колебаний малое, то есть за время жизни колебательная система совершает множество колебаний, количество витков спирали в фазовой плоскости будет таким же.

До сих пор мы рассматривали гармонические колебания, возникающие, как это уже отмечалось, при наличии в системе единственной силы - силы упругости или квазиупругой силы. В окружающей нас природе, строго говоря, таких колебаний не существует. В реальных системах кроме упругих или квазиупругих сил всегда присутствуют и другие силы, отличающиеся по характеру действия от упругих - это силы, возникающие при взаимодействии тел системы с окружающей средой - диссипативные силы. Конечным результатом их действия является переход механической энергии движущегося тела в теплоту. Другими словами, происходит рассеяние или диссипация механической энергии. Процесс рассеяния энергии не является чисто механическим и для своего описания требует привлечения знаний из других разделов физики. В рамках механики мы можем описать этот процесс путем введения сил трения или сопротивления. В результате рассеяния энергии амплитуда колебаний убывает. В этом случае принято говорить, что колебания тела или системы тел затухают. Затухающие колебания уже не являются гармоническими, так как их амплитуда и частота со временем изменяются.

Колебания, которые вследствие рассеяния энергии в колеблющейся системе происходят с непрерывно уменьшающейся амплитудой, называются затухающими. Если колебательная система, выведенная из состояния равновесия, совершает колебания под действием только внутренних сил, без сопротивления и рассеяния (диссипации) энергии, то совершающиеся в ней колебания называются свободными (или собственными) незатухающими колебаниями. В реальных механических системах с диссипацией энергии свободные колебания всегда затухающие. Их частота со отличается от частоты со 0 колебаний системы без затухания (о 0 тем больше, чем больше влияние сил сопротивления.

Рассмотрим затухающие колебания на примере пружинного маятника. Ограничимся рассмотрением малых колебаний. При малых скоростях колебаний силу сопротивления можно принять пропорциональной величине скорости колебательных смещений

где v = 4 - скорость колебаний; г - коэффициент пропорциональности, называемый коэффициентом сопротивления. Знак минус в выражении (2.79) для силы сопротивления обусловлен тем, что она направлена в сторону, противоположную скорости движения колеблющегося тела.

Зная выражения для квазиупругой силы i^p = -и силы сопротивления F c = с учетом совместного действия этих сил, можно записать динамическое уравнение движения тела, совершающего затухающие колебания

В этом уравнении коэффициент (3 в соответствии с формулой (2.49) заменим на ты], после чего последнее уравнение разделим наши получим

Будем искать решение уравнения (2.81) в виде функции времени вида

Здесь пока еще неопределенная постоянная величина у. Начальная фаза в нашем рассмотрении будет для упрощения предполагаться равной нулю, т.е. мы можем «включить» секундомер тогда, когда колебательное смещение проходит через положение равновесия (нуль координаты).

Определить величину у можем путем подстановки в дифференциальное уравнение затухающих колебаний (2.81) предполагаемого решения (2.82), а также получаемых из него скорости

и ускорения

Подстановка (2.83) и (2.84) совместно с (2.82) в (2.81) дает После сокращения на /1 () е" : " и умножения на «-1» получим Решив это квадратное уравнение относительно у, имеем

Подставив у в (2.82), найдем, как зависит смещение от времени при затухающих колебаниях. Введем обозначения

где символом со обозначена угловая частота затухающих колебаний и соо угловая частота свободных колебаний без затухания. Видно, что при S > 0 частота со затухающих колебаний всегда меньше частоты

Таким образом, и, следовательно, смещение при затухающих колебаниях может быть выражено в виде

Выбор знака «+» или «-» в показателе второй экспоненты произволен и отвечает сдвигу колебаний по фазе на л . Будем записывать затухающие колебания с учетом выбора знака «+», тогда выражение (2.90) будет

Это и есть искомая зависимость смещения от времени. Ее можно переписать и в тригонометрической форме (ограничиваясь действительной частью)

Искомая зависимость амплитуды A(t ) от времени может быть представлена в виде

где А(, - амплитуда в момент времени t = 0.

Постоянную 8, равную согласно (2.88) отношению коэффициента сопротивления г к удвоенной массе т колеблющегося тела, называют коэффициентом затухания колебаний. Выясним физический смысл этого коэффициента. Найдем то время т, за которое амплитуда затухающих колебаний уменьшится в е (основание натуральных логарифмов е = 2,72) раз. Для этого положим

Используя соотношение (2.93), получим: или

откуда следует

Следовательно, коэффициент затухания 8 - это величина, обратная времени т, по прошествии которого амплитуда затухающих колебаний уменьшится в е раз. Величина т, имеющая размерность времени, называется постоянной времени затухающего колебательного процесса.

Кроме коэффициента 8 для характеристики процесса затухания колебаний часто используют так называемый логарифмический декремент затухания X, равный натуральному логарифму отношения двух амплитуд колебаний, отделенных друг от друга промежутком времени, равным периоду Т

Выражение под логарифмом, обозначенное символом d, называется просто декрементом колебаний (декрементом затухания).

Используя выражение амплитуды (2.93), получим:

Выясним физический смысл логарифмического декремента затухания. Пусть амплитуда колебаний уменьшается в е раз по прошествии N колебаний. Время т, за которое тело совершит N колебаний, можно выразить через период т = NT. Подставив это значение т в (2.97), получаем 8NT= 1. Поскольку 67"= А., то NX = 1, или

Следовательно, логарифмический декремент затухания есть величина, обратная числу колебаний, за которые амплитуда затухающих колебаний уменьшится в е раз.

В ряде случаев зависимость амплитуды колебаний от времени A{t) удобно выразить через логарифмический декремент затухания А. Показатель степени 61 выражения (2.93) можно записать согласно (2.99) следующим образом:

Тогда выражение (2.93) принимает вид

где величина, равная числу N колебаний, совершаемых системой за время т.

В таблице 2.1 проведены примерные значения (по порядку величины) логарифмических декрементов затухания некоторых колебательных систем.

Таблица 2.1

Значения декрементов затухания некоторых колебательных систем

Проанализируем теперь влияние сил сопротивления на частоту колебаний. При смешении тела из положения равновесия и возвращении его в положение равновесия, на него все время будет действовать сила сопротивления, вызывая его торможение.

Это значит, что те же самые участки пути при затухающих колебаниях будут пройдены телом за больший интервал времени, чем при свободных колебаниях. Период затухающих колебаний Т, следовательно, будет больше периода собственных свободных колебаний. Из выражения (2.89) видно, что различие в частотах становится тем больше, чем больше коэффициент затухания б. При больших б (б > соо) затухающие колебания вырождаются в апериодический {не периодический) процесс, при котором в зависимости от начальных условий система возвращается в положение равновесия сразу без его прохождения, либо перед остановкой проходит положение равновесия однократно (совершает только одно колебание) - см. рис. 2.16.

Рис. 2.16. Затухающие колебания:

На рисунке 2.16, а изображен график зависимости %{t) и A{t) (при 5 > со 0 и начальной фазе соо, колебания вовсе невозможны (этому случаю соответствует мнимое значение частоты, определяемой из равенства (2.89). Система становится демпфирующей, а колебательный процесс - апериодическим (рис. 2.16, б).

  • Запись ехр(х) эквивалентна е*. Мы будем пользоваться обеими формами.
  • При общем рассмотрении колебаний полное значение фазы колебаний задается начальными условиями, т.е. величиной смещения 4(0 и скорости 4(0 в начальный моментвремени (t = 0) и включает слагаемое

Причина затухания заключается в том, что во всякой колебательной системе, кроме возвращающей силы, всегда действуют разного рода , сопротивление воздуха

и т. п., которые тормозят движение. При каждом размахе часть расходуется на работу против сил трения. В конечном итоге на эту работу уходит весь запас энергии, сообщенный колебательной системе первоначально.

Рассматривая , мы имели дело с идеальными, строго периодическими собственными колебаниями. Описывая при помощи такой модели реальные колебания, мы сознательно допускаем неточность в описании. Однако подобное упрощение является пригодным в силу того, что у многих колебательных систем затухания колебаний, вызванные трением, действительно малы: система успевает совершить много колебаний прежде, чем их уменьшится заметным образом.

Графики затухающих колебаний

При наличии затухания собственное колебание (рис.1) перестает быть гармоническим. Более того, затухающее колебание перестает быть периодическим процессом — трение влияет не только на амплитуду колебаний (то есть является причиной затухания), но и на продолжительность размахов. С увеличением трения время, необходимое системе для совершения одного полного колебания, увеличивается. График затухающих колебаний представлен на рис. 2.

Рис.1. График свободных гармонических колебаний


Рис.2. График затухающих колебаний

Характерной чертой колебательных систем является то, что небольшое трение влияет на период колебаний в гораздо меньшей степени, чем на амплитуду. Это обстоятельство сыграло огромную роль в усовершенствовании часов. Первые часы с построил голландский физик и математик Христиан Гюйгенс в 1673 г. Этот год можно считать датой рождения современных часовых механизмов. Ход часов с маятником мало чувствителен к изменениям, обусловленным трением, которые в общем случае зависят от многих факторов, в то время как скорость хода предшествующих безмаятниковых часов очень сильно зависела от трения.

На практике возникает потребность как в уменьшении, так и в увеличении затухания колебаний. К примеру, при конструировании часовых механизмов стремятся уменьшить затухание колебаний балансира часов. Для этого ось балансира снабжают острыми наконечниками, которые упираются в хорошо отполированные конические подпятники, выполненные из твердого камня (агата или рубина). Наоборот, во многих измерительных приборах очень желательно, чтобы подвижная часть устройства устанавливалась в процессе измерений быстро, но совершая большого числа колебаний. Для увеличения затухания в этом случае применяют различные демпферы – устройства, увеличивающие трение и, в общем случае, потерю энергии.

Все реальные колебательные системы являются диссипативными. Энергия механических колебаний системы с течением времени расходуется на работу против сил трения, поэтому собственные колебания всегда затухают – их амплитуда постепенно уменьшается. Потеря энергии происходит и при деформациях тел, так как вполне упругих тел не существует, а деформации не вполне упругих тел сопровождаются частичным переходом механической энергии в энергию хаотического теплового движения частиц этих тел.

Во многих случаях в первом приближении можно считать, что при небольших скоростях движения силы, вызывающие затухание механических колебаний, пропорциональны величине скорости. Будем называть эти силы, независимо от их происхождения, силами трения или сопротивления и вычислять их по следующей формуле: . Здесь r – коэффициент сопротивления среды, – скорость движения тела. Знак минус указывает на то, что силы трения всегда направлены в сторону, противоположную направлению движения тела.

Запишем уравнение второго закона Ньютона для затухающих прямолинейных колебаний пружинного маятника

Здесь: m – масса груза, k – жесткость пружины, – проекция скорости на ось ОХ, – проекция ускорения на ось ОХ. Поделим обе части уравнения (13) на массу m и перепишем его в виде:

. (14)

Введем обозначения:

, (15)

. (16)

Назовем коэффициентом затухания, а мы ранее назвали собственной циклической частотой. С учетом введенных обозначений (15 и 16) уравнение (14) запишется

. (17)

Это дифференциальное уравнение затухающих колебаний любой природы. Вид решения этого линейного дифференциального уравнения второго порядка зависит от соотношения между величиной – собственной частотой незатухающих колебаний и коэффициентом затухания .

Если трение очень велико (в этом случае ), то система, выведенная из положения равновесия, возвращается в него, не совершая колебаний («ползет»). Такое движение (кривая 2 на рис.3) называют апериодическим.

Если же в начальный момент система с большим трением находится в положении равновесия и ей сообщается некоторая начальная скорость , то система достигает наибольшего отклонения от положения равновесия , останавливается и после этого смещение асимптотически стремится к нулю (рис.4).



Рис.3 Рис.4

Если система выведена из положения равновесия при условии и отпущена без начальной скорости, то система также не переходит положения равновесия. Но в этом случае время практического приближения к нему оказывается меньше, чем в случае большого трения (кривая 1 на рис 3). Такой режим называется критическим и к нему стремятся при использовании различных измерительных приборов (для быстрейшего отсчета показаний).



при малом трении (в этом случае ) движение носит колебательный характер (рис.5) и решение уравнения (17) имеет вид:

(19)

описывает изменение амплитуды затухающих колебаний со временем. Амплитуда затухающих колебаний уменьшается с течением времени (рис.5) и тем быстрее, чем больше коэффициент сопротивления и чем меньше масса колеблющегося тела, то есть чем меньше инертность системы.


Рис.5

Величину

называют циклической частотой затухающих колебаний. Затухающие колебания представляют собой непериодические колебания, так как в них никогда не повторяются, например, максимальные значения смещения, скорости и ускорения. Поэтому назвать частотой можно лишь условно в том смысле, что она показывает, сколько раз за секунд колеблющаяся система проходит через положение равновесия. По этой же причине величину

(21)

можно назвать условным периодом затухающих колебаний .

Для характеристики затухания введем следующие величины:

Логарифмический декремент затухания;

Время релаксации;

Добротность.

Отношение двух любых последовательных смещений, разделенных во времени одним периодом называют декрементом затухания .

Логарифмическим декрементом затухания называется натуральный логарифм отношения значений амплитуды затухающих колебаний в моменты времени t и t+T (натуральный логарифм отношение двух любых последовательных смещений, разделенных во времени одним периодом):

Поскольку и , то .

Воспользуемся формулой зависимости амплитуды от времени (19) и получим

Выясним физический смысл величин и . Обозначим через промежуток времени, за который амплитуда затухающих колебаний убывает в е раз и назовем его временем релаксации . Тогда . отсюда следует, что

Загрузка...
Top