Теория игр и статистических решений. Понятие чистых и смешанных стратегий

Если в игре каждый из противников применяет только одну и ту же стратегию, то про саму игру в этом случае говорят, что она происходит в чистых стратегиях , а используемые игроком А и игроком В пара стратегий называются чистыми стратегиями .

Определение. В антагонистической игре пара стратегий (А i , В j) называется равновесной или устойчивой, если ни одному из игроков не выгодно отходить от своей стратегии.

Применять чистые стратегии имеет смысл тогда, когда игроки А и В располагают сведениями о действиях друг друга и достигнутых результатах. Если допустим, что хотя бы одна из сторон не знает о поведении противника, то идея равновесия нарушается, и игра ведется бессистемно.

Рассмотрим матричную игру G (3х4)

В этом примере нижняя цена игры равна верхней: ==9, т.е. игра имеет седловую точку.

Оказывается, что в этом случае максиминные стратегии А 2 и В 2 будут устойчивыми по отношению к информации о поведении противника.

Действительно, пусть игрок А узнал, что противник применяет стратегию В 2 . Но и в этом случае игрок А будет по-прежнему придерживаться стратегии А 2 , потому что любое отступление от стратегии А 2 только уменьшит выигрыш. Равным образом, информация, полученная игроком В , не заставит его отступить от своей стратегии В 2 .

Пара стратегий А 2 и В 2 обладает свойством устойчивости, а выигрыш (в рассматриваемом примере он равен 9), достигаемый при этой паре стратегий, оказывается седловой точкой платежной матрицы.

Признак устойчивости (равновесности) пары стратегии - это равенство нижней и верхней цены игры.

Стратегии А i и В j (в рассматриваемом примере А 2 , В 2), при котором выполняется равенство нижней и верхней цены игры, называются оптимальными чистыми стратегиями, а их совокупность - решением игры. Про саму игру в этом случае говорят, что она решается в чистых стратегиях.

Величина называется ценой игры.

Если 0, то игра выгодна для игрока А, если 0 - для игрока В; при =0 игра справедлива, т.е. является одинаково выгодной для обоих участников.

Однако наличие седловой точки в игре - это далеко не правило, скорее - исключение. Большинство матричных игр, не имеет седловой точки, а следовательно, не имеет оптимальных чистых стратегий. Впрочем, есть разновидность игр, которые всегда имеют седловую точку и, значит, решаются в чистых стратегиях. Это - игры с полной информацией.

Теорема 2. Каждая игра с полной информацией имеет седловую точку, а следовательно, решается в чистых стратегиях, т.е. имеется пара оптимальных чистых стратегий, дающая устойчивый выигрыш, равный.

Если такая игра состоит только из личных ходов, то при применении каждым игроком своей оптимальной чистой стратегии она должна кончаться выигрышем, равным цене игры. Скажем, шахматная игра, как игра с полной информацией, либо всегда кончается выигрышем белых, либо всегда - выигрышем черных, либо всегда - ничьей (только чем именно - мы пока не знаем, так как число возможных стратегий в шахматной игре огромно).

Если матрица игры содержит седловую точку, то ее решение сразу находится по принципу максимина.

Возникает вопрос: как найти решение игры, платежная матрица которой не имеет седловой точки? Применение максиминного принципа каждым из игроков обеспечивает игроку А выигрыш не менее, игроку - проигрыш не больше. Учитывая что, естественно для игрока А желание увеличить выигрыш, а для игрока В - уменьшить проигрыш. Поиск такого решения производит к необходимости применять смешанные стратегии: чередовать чистые стратегии с какими-то частотами.

Определение. Случайная величина, значениями которой являются чистые стратегии игрока, называется его смешанной стратегией .

Таким образом, задание смешанной стратегии игрока состоит в указании тех вероятностей, с которыми выбираются его чистые стратегии.

Будем обозначать смешанные стратегии игроков А и В соответственно

S A =||p 1 , p 2 , ..., p m ||,

S B =||q 1 , q 2 , ..., q n ||,

где p i - вероятность применения игроком А чистой с тратегии А і ; ; q j - вероятность применения игроком В чистой стратегии B j ; .

В частном случае, когда все вероятности, кроме одной, равны нулю, а эта одна - единице, смешанная стратегия превращается в чистую.

Применение смешанных стратегий осуществляется, например, таким образом: игра повторяется много раз, но в каждой партии игрок применяет различные чистые стратегии с относительными частотами их применения, равными p i и q j .

Смешанные стратегии в теории игр представляют собой модель изменчивой, гибкой тактики, когда ни один из игроков не знает, какую чистую стратегию выберет противник в данной партии.

Если игрок А применяет смешанную стратегию S A =||p 1 , p 2 , ..., p m ||, а игрок В смешанную стратегию S B =||q 1 , q 2 , ..., q n ||, то средний выигрыш (математическое ожидание) игрока А определяется соотношением

Естественно, что ожидаемый проигрыш игрока В равен такой же величине.

Итак, если матричная игра не имеет седловой точки, то игрок должен использовать оптимальную смешанную стратегию, которая обеспечит максимальный выигрыш.

Естественно возникает вопрос: какими соображениями нужно руководствоваться при выборе смешанных стратегий? Оказывается принцип максимина сохраняет свое значение и в этом случае. Кроме того, важное значение для понимания решения игр, играют основные теоремы теории игр.

Чистой стратегией игрока I является выбор одной из n строк матрицы выигрышей А, а чистой стратегией игрока II является выбор одного из столбцов этой же матрицы.

Оптимальные чистые стратегии игроков отличаются от смешанных наличием обязательного единичного p i = 1, q i = 1. Например: P(1,0), Q(1,0). Здесь p 1 = 1, q 1 = 1.

Задача 1
По платёжной матрице найти оптимальные чистые стратегии, используя принцип строгого доминирования. В качестве ответа записать векторы P*, Q*.



R1

R2

R3

R4

S1

3

1

2

5

S2

2

0

0

3

S3

-3

-5

-5

-2

S4

0

-2

-2

1

Решение:

Все задачи решаем с помощью калькулятора Матричная игра .

Считаем, что игрок I выбирает свою стратегию так, чтобы получить максимальный свой выигрыш, а игрок II выбирает свою стратегию так, чтобы минимизировать выигрыш игрока I.

Игроки B 1 B 2 B 3 B 4 a = min(A i)
A 1 3 1 2 5 1
A 2 2 0 0 3 0
A 3 -3 -5 -5 -2 -5
A 4 0 -2 -2 1 -2
b = max(B i) 3 1 2 5
Находим гарантированный выигрыш, определяемый нижней ценой игры a = max(a i) = 1, которая указывает на максимальную чистую стратегию A 1 .
Верхняя цена игры b = min(b j) = 1.
Седловая точка (1, 2) указывает решение на пару альтернатив (A1,B2). Цена игры равна 1.
2. Проверяем платежную матрицу на доминирующие строки и доминирующие столбцы.
Иногда на основании простого рассмотрения матрицы игры можно сказать, что некоторые чистые стратегии могут войти в оптимальную смешанную стратегию лишь с нулевой вероятностью.
Говорят, что i-я стратегия 1-го игрока доминирует его k-ю стратегию, если a ij ≥ a kj для всех j Э N и хотя бы для одного j a ij > a kj . В этом случае говорят также, что i-я стратегия (или строка) – доминирующая, k-я – доминируемая.
Говорят, что j-я стратегия 2-го игрока доминирует его l-ю стратегию, если для всех j Э M a ij ≤ a il и хотя бы для одного i a ij < a il . В этом случае j-ю стратегию (столбец) называют доминирующей, l-ю – доминируемой.
Стратегия A 1 доминирует над стратегией A 2 (все элементы строки 1 больше или равны значениям 2-ой строки), следовательно исключаем 2-ую строку матрицы. Вероятность p 2 = 0.
Стратегия A 1 доминирует над стратегией A 3 (все элементы строки 1 больше или равны значениям 3-ой строки), следовательно исключаем 3-ую строку матрицы. Вероятность p 3 = 0.
3 1 2 5
0 -2 -2 1

С позиции проигрышей игрока В стратегия B 1 доминирует над стратегией B 2 (все элементы столбца 1 больше элементов столбца 2), следовательно исключаем 1-й столбец матрицы. Вероятность q 1 = 0.
С позиции проигрышей игрока В стратегия B 4 доминирует над стратегией B 1 (все элементы столбца 4 больше элементов столбца 1), следовательно исключаем 4-й столбец матрицы. Вероятность q 4 = 0.
1 2
-2 -2

Мы свели игру 4 x 4 к игре 2 x 2.



Решение игры (2 x n


p 1 = 1
p 2 = 0
Цена игры, y = 1
Теперь можно найти минимаксную стратегию игрока B, записав соответствующую систему уравнений
q 1 = 1
q 1 +q 2 = 1
Решая эту систему, находим:
q 1 = 1.
Ответ:
Цена игры: y = 1, векторы стратегии игроков:
Q(1, 0), P(1, 0)

∑a ij q j ≤ v
∑a ij p i ≥ v
M(P 1 ;Q) = (1 1) + (2 0) = 1 = v
M(P 2 ;Q) = (-2 1) + (-2 0) = -2 ≤ v
M(P;Q 1) = (1 1) + (-2 0) = 1 = v
M(P;Q 2) = (2 1) + (-2 0) = 2 ≥ v

Поскольку из исходной матрицы были удалены строки и столбцы, то найденные векторы вероятности можно записать в виде:
P(1,0,0,0)
Q(0,1,0,0)

Задача 2
По платёжной матрице найти нижнюю и верхнюю цену игры. При наличии седловой точки записать векторы оптимальных чистых стратегий P*, Q*.



R1

R2

R3

S1

-6

-5

0

S2

-8

-3

-2

S3

-3

-2

3

Решение:
1. Проверяем, имеет ли платежная матрица седловую точку. Если да, то выписываем решение игры в чистых стратегиях.
Игроки B 1 B 2 B 3 a = min(A i)
A 1 -6 -5 0 -6
A 2 -8 -3 -2 -8
A 3 -3 -2 3 -3
b = max(B i) -3 -2 3

Находим гарантированный выигрыш, определяемый нижней ценой игры a = max(a i) = -3, которая указывает на максимальную чистую стратегию A 3 .
Верхняя цена игры b = min(b j) = -3.
Седловая точка (3, 1) указывает решение на пару альтернатив (A3,B1). Цена игры равна -3.
Ответ: P(0,0,1), Q(1,0,0)

Задача 3
По платёжной матрице найти векторы оптимальных стратегий P*, Q*и цену игры. Кто из игроков оказывается в выигрыше?



R1

R2

R3

R4

S1

-6

-6

2

4

S2

2

-2

7

-1

Решение:
1. Проверяем, имеет ли платежная матрица седловую точку. Если да, то выписываем решение игры в чистых стратегиях.
Считаем, что игрок I выбирает свою стратегию так, чтобы получить максимальный свой выигрыш, а игрок II выбирает свою стратегию так, чтобы минимизировать выигрыш игрока I.
Игроки B 1 B 2 B 3 B 4 a = min(A i)
A 1 -6 -6 2 4 -6
A 2 2 -2 7 -1 -2
b = max(B i) 2 -2 7 4

Находим гарантированный выигрыш, определяемый нижней ценой игры a = max(a i) = -2, которая указывает на максимальную чистую стратегию A 2 .
Верхняя цена игры b = min(b j) = -2.
Седловая точка (2, 2) указывает решение на пару альтернатив (A2,B2). Цена игры равна -2.
3. Находим решение игры в смешанных стратегиях.
Решим задачу геометрическим методом, который включает в себя следующие этапы:
1. В декартовой системе координат по оси абсцисс откладывается отрезок, длина которого равна 1. Левый конец отрезка (точка х = 0) соответствует стратегии A 1 , правый - стратегии A 2 (x = 1). Промежуточные точки х соответствуют вероятностям некоторых смешанных стратегий S 1 = (p 1 ,p 2).
2. На левой оси ординат откладываются выигрыши стратегии A 1 . На линии, параллельной оси ординат, из точки 1 откладываются выигрыши стратегии A 2 .
Решение игры (2 x n ) проводим с позиции игрока A, придерживающегося максиминной стратегии. Доминирующихся и дублирующих стратегий ни у одного из игроков нет.

Максиминной оптимальной стратегии игрока A соответствует точка N, для которой можно записать следующую систему уравнений:
p 1 = 0
p 2 = 1
Цена игры, y = -2
Теперь можно найти минимаксную стратегию игрока B, записав соответствующую систему уравнений, исключив стратегию B 1 ,B 3 ,B 4 , которая дает явно больший проигрыш игроку B, и, следовательно, q 1 = 0,q 3 = 0,q 4 = 0.
-2q 2 = -2
q 2 = 1
Решая эту систему, находим:
q 2 = 1.
Ответ:
Цена игры: y = -2, векторы стратегии игроков:
Q(0, 1, 0, 0), P(0, 1)
4. Проверим правильность решения игры с помощью критерия оптимальности стратегии.
∑a ij q j ≤ v
∑a ij p i ≥ v
M(P 1 ;Q) = (-6 0) + (-6 1) + (2 0) + (4 0) = -6 ≤ v
M(P 2 ;Q) = (2 0) + (-2 1) + (7 0) + (-1 0) = -2 = v
M(P;Q 1) = (-6 0) + (2 1) = 2 ≥ v
M(P;Q 2) = (-6 0) + (-2 1) = -2 = v
M(P;Q 3) = (2 0) + (7 1) = 7 ≥ v
M(P;Q 4) = (4 0) + (-1 1) = -1 ≥ v
Все неравенства выполняются как равенства или строгие неравенства, следовательно, решение игры найдено верно.

Задача 4
Дайте развернутый ответ на вопрос

Описание биматричной игры . Все игры которые были рассмотрены, относились к классу игр с нулевой суммой . Однако ряд конфликтных ситуаций, складывающихся в ходе действий, характерны тем, что выигрыш одной стороны не равен в точности проигрышу другой. Теоретико-игровыми моделями подобных ситуаций являются некооперативные игры с ненулевой суммой. Такие игры называются биматричными , потому что задание каждой такой игры сводится к заданию двух матриц и одинаковой формы: .

Процесс биматричной игры состоит в независимом выборе игроком I числа а игроком II - числа , после чего игрок I получает выигрыш , а игрок II - выигрыш .

Номера строк матриц и назовем чистыми стратегиями игрока I, а номера столбцов этих матриц – чистыми стратегиями игрока II. Тогда пары вида будут являться ситуациями в чистых стратегиях биматричной игры , а числа и - выигрышами I и II игроков в ситуации . Соответственно, распределение вероятностей применения чистых стратегий игрока I - и игрока II - будем называть смешанными стратегиями . Тогда пары вида представляют ситуации биматричной игры в смешанных стратегиях , а числа и являются математическими ожиданиями выигрыша I и II игроков.

Ситуацией равновесия биматричной игры в смешанных стратегиях будем называть такую пару , при которой:

(8.2)
,

где - математическое ожидание выигрыша игрока I;

Математическое ожидание выигрыша игрока II;

Оптимальная смешанная стратегия игрока I;

Оптимальная смешанная стратегия игрока II.

Задача

Построение и решение биматричной игры . Предположим, что противолодочная подводная лодка страны осуществляет поиск ракетной подводной лодки государства , которая маневрирует в строго определенной части района боевого патрулирования. В остальной части этого района действует противолодочная подводная лодка , которая осуществляет поиск противолодочной подводной лодки . Пусть каждая противолодочная лодка для обнаружения противника может использовать свою гидроакустическую станцию или в активном режиме, включая ее периодически, или только в пассивном режиме, выполняя непрерывный поиск .

Как противолодочная подводная лодка , так и ракетная подводная лодка с обнаружением сигналов гидролокатора может уклониться от противника. Однако периодичность включения гидролокатора делает обнаружение возможным, но недостоверным.

В подобной конфликтной ситуации одним из игроков является противолодочная подводная лодка , а другим - противолодочная подводная лодка .Очевидно, ракетная подводная лодка не может быть игроком, так как она имеет только один способ действий, заключающийся в скрытом маневрировании и выполнении уклонения с обнаружением сигналов гидролокаторов.

Характерным здесь является то, что каждый из игроков преследует разные, но не противоположные цели. Действительно, целью противолодочной подводной лодки является обнаружение ракетной подводной лодки, а целью противолодочной подводной лодки - обнаружение противолодочной подводной лодки . Поэтому для оценки достижения цели каждым из игроков в зависимости от выбранных способов действий (стратегий) необходимо иметь два критерия эффективности и соответственно две функции выигрыша. Тогда моделью подобной конфликтной ситуации будет конечная игра с ненулевой суммой, описываемая двумя матрицами одинаковой формы и , называемая биматричной.

Примем за критерий эффективности противолодочной подводной лодки (игрок I) вероятность обнаружения ракетной подводной лодки , а за критерий эффективности противолодочной подводной лодки (игрок II) – вероятность обнаружения противолодочной подводной лодки . Тогда биматричная игра будет задана матрицей (рисунок 9.a) и матрицей (рисунок 9.b).


Рис. 9.a.


Рис. 9.b.

Где - использование активного режима;

Использование пассивного режима.

Смешанной стратегией SA игрока А называется применение чистых стратегий A1, A2, ..., Am с вероятностями p1, p2, ..., pi, ..., pm причем сумма вероятностей равна 1: Смешанные стратегии игрока А записываются в виде матрицы или в виде строки SA = (p1, p2, ..., pi, ..., pm) Аналогично смешанные стратегии игрока В обозначаются: , или, SB = (q1, q2, ..., qi, ..., qn), где сумма вероятностей появления стратегий равна 1: Чистые стратегии можно считать частным случаем смешанных и задавать строкой, в которой 1 соответствует чистой стратегии. На основании принципа минимакса определяется оптимальное решение (или решение) игры: это пара оптимальных стратегий S*A , S*B в общем случае смешанных, обладающих следующим свойством: если один из игроков придерживается своей оптимальной стратегии, то другому не может быть выгодно отступать от своей. Выигрыш, соответствующий оптимальному решению, называется ценой игры v. Цена игры удовлетворяет неравенству: ? ? v ? ? (3.5) где? и? - нижняя и верхняя цены игры. Справедлива следующая основная теорема теории игр - теорема Неймана. Каждая конечная игра имеет по крайней мере одно оптимальное решение, возможно, среди смешанных стратегий. Пусть S*A = (p*1, p*2, ..., p*i, ..., p*m) и S*B = (q*1, q*2, ..., q*i, ..., q*n) - пара оптимальных стратегий. Если чистая стратегия входит в оптимальную смешанную стратегию с отличной от нуля вероятностью, то она называется активной. Справедлива теорема об активных стратегиях: если один из игроков придерживается своей оптимальной смешанной стратегии, то выигрыш остается неизменным и равным цене игры v, если второй игрок не выходит за пределы своих активных стратегий. Эта теорема имеет большое практическое значение - она дает конкретные модели нахождения оптимальных стратегий при отсутствии седловой точки. Рассмотрим игру размера 2×2, которая является простейшим случаем конечной игры. Если такая игра имеет седловую точку, то оптимальное решение - это пара чистых стратегий, соответствующих этой точке. Игра, в которой отсутствует седловая точка, в соответствии с основной теоремой теории игр оптимальное решение существует и определяется парой смешанных стратегий S*A = (p*1, p*2) и S*B = (q*1, q*2). Для того чтобы их найти, воспользуемся теоремой об активных стратегиях. Если игрок А придерживается своей оптимальной стратегии S"A, то его средний выигрыш будет равен цене игры v, какой бы активной стратегией ни пользовался игрок В. Для игры 2×2 любая чистая стратегия противника является активной, если отсутствует седловая точка. Выигрыш игрока А (проигрыш игрока В) - случайная величина, математическое ожидание (среднее значение) которой является ценой игры. Поэтому средний выигрыш игрока А (оптимальная стратегия) будет равен v и для 1-й, и для 2-й стратегии противника. Пусть игра задана платежной матрицей Средний выигрыш игрока А, если он использует оптимальную смешанную стратегию, а игрок В - чистую стратегию B1 (это соответствует 1-му столбцу платежной матрицы Р), равен цене игры v: a11 p*1+ a21 p*2= v. Тот же средний выигрыш получает игрок А, если 2-й игрок применяет стратегию B2, т.е. a12 p*1+ a22 p*2= v. Учитывая, что p*1+ p*2= 1, получаем систему уравнений для определения оптимальной стратегии S"A и цены игры v: (3.6) Решая эту систему, получим оптимальную стратегию (3.7) и цену игры (3.8) Применяя теорему об активных стратегиях при отыскании SВ*- оптимальной стратегии игрока В, получаем, что при любой чистой стратегии игрока А (А1 или А2) средний проигрыш игрока В равен цене игры v, т.е. (3.9) Тогда оптимальная стратегия определяется формулами: (3.10)

5. ТЕОРИЯ ИГР И СТАТИСТИЧЕСКИХ РЕШЕНИЙ

5.1. Матричная игра с нулевой суммой

Экономико-математическое моделирование осуществляется в условиях:

Определенности;

Неопределенности.

Моделирование в условиях определенности предполагает наличие всех необходимых для этого исходных нормативных данных (матричное моделирование, сетевое планирование и управление).

Моделирование в условиях риска проводится при стохастической неопределенности, когда значения некоторых исходных данных случайны и известны законы распределения вероятностей этих случайных величин (регрессионный анализ, теория массового обслуживания).

Моделирование в условиях неопределенности соответствует полному отсутствию некоторых необходимых для этого данных (теория игр).

Математические модели принятия оптимальных решений в конфликтных ситуациях строятся в условиях неопределенности.

В теории игр оперируют следующими основными понятиями:

Стратегия;

Функция выигрыша.

Ходом будем называть выбор и осуществление игроком одного из предусмотренных правилами игры действий.

Стратегия - это технология выбора варианта действий при каждом ходе в зависимости от сложившейся ситуации.

Функция выигрыша служит для определения величины платежа проигравшего игрока выигравшему.

В матричной игре функция выигрыша представляется в виде платежной матрицы :

где - величина платежа игроку I, выбравшему ход , от игрока II, выбравшего ход .

В такой парной игре значения функций выигрыша обоих игроков в каждой ситуации равны по величине и противоположны по знаку, т. е. и такую игру называют с нулевой суммой .

Процесс "игры в матричную игру" представляется следующим образом:

Задается платежная матрица ;

Игрок I независимо от игрока II выбирает одну из строк этой матрицы, например, -ую;

Игрок II независимо от игрока I выбирает один из столбцов этой матрицы, например, - ый;

Элемент матрицы определяет, сколько получит игрок I от игрока II. Разумеется, если , то речь идет о фактическом проигрыше игрока I.

Антагонистическую парную игру с платежной матрицей будем называть игрой .

Пример

Рассмотрим игру .

Задана платежная матрица:

.

Пусть игрок I независимо от игрока II выбирает 3-ю строку этой матрицы, а игрок II независимо от игрока I выбирает 2-ой столбец этой матрицы:

Тогда игрок I получит 9 единиц от игрока II.

5.2. Оптимальная чистая стратегия в матричной игре

Оптимальной стратегией называется такая стратегия игрока I, при которой он не уменьшит своего выигрыша при любом выборе стратегии игроком II, и такая стратегия игрока II, при которой он не увеличит своего проигрыша при любом выборе стратегии игроком I.

Выбирая в качестве хода -ую строку платежной матрицы, игрок I обеспечивает себе выигрыш не менее величины в наихудшем случае, когда игрок II будет стараться минимизировать эту величину. Поэтому игрок I выберет такую -ую строку, которая обеспечит ему максимальный выигрыш:

.

Игрок II рассуждает аналогично и может наверняка обеспечить себе минимальный проигрыш:

.

Всегда справедливо неравенство:

Величину называют нижней ценой игры .

Величину называют верхней ценой игры .

Оптимальные стратегии и называются чистыми , если для них выполняются равенства:

,

.

Величину называют чистой ценой игры , если .

Оптимальные чистые стратегии и образуют седловую точку платежной матрицы .

Для седловой точки выполняются условия:

т. е. элемент является наименьшим в строке и наибольшим в столбце.

Таким образом, если платежная матрица имеет седловую точку , то можно найти оптимальные чистые стратегии игроков.

Чистая стратегия игрока I может быть представлена упорядоченным набором чисел (вектором), в котором все числа равны нулю, кроме числа, стоящего на - ом месте, которое равно единице.

Чистая стратегия игрока II может быть представлена упорядоченным набором чисел (вектором), в котором все числа равны нулю, кроме числа, стоящего на - ом месте, которое равно единице.

Пример

.

Выбирая в качестве хода какую-нибудь строку платежной матрицы, игрок I обеспечивает себе выигрыш в наихудшем случае не менее величины в столбце, обозначенном :

Поэтому игрок I выберет 2-ую строку платежной матрицы, обеспечивающую ему максимальный выигрыш независимо от хода игрока II, который будет стараться минимизировать эту величину:

Игрок II рассуждает аналогично и выберет в качестве хода 1-ый столбец:

Таким образом, имеется седловая точка платежной матрицы:

соответствующая оптимальной чистой стратегии для игрока I и для игрока II, при которой игрок I не уменьшит своего выигрыша при любом изменении стратегии игроком II и игрок II не увеличит своего проигрыша при любом изменении стратегии игроком I.

5.3. Оптимальная смешанная стратегия в матричной игре

Если платежная матрица не имеет седловой точки, то любому игроку нерационально использовать одну чистую стратегию. Выгоднее использовать "вероятностные смеси" чистых стратегий. Тогда в качестве оптимальных определяются уже смешанные стратегии.

Смешанная стратегия игрока характеризуется распределением вероятности случайного события, заключающегося в выборе этим игроком хода.

Смешанной стратегией игрока I называют такой упорядоченный набор чисел (вектор), который удовлетворяет двум условиям:

1) для , т. е. вероятность выбора каждой строки платежной матрицы неотрицательна;

2) , т. е. выбор каждой из строк платежной матрицы в совокупности представляет полную группу событий.

Смешенной стратегией игрока II будет упорядоченный набор чисел (вектор), удовлетворяющий условиям:

Величина платежа игроку I, выбравшему смешанную стратегию

от игрока II, выбравшему смешанную стратегию

,

представляет собой среднюю величину

.

Оптимальными называют смешанные стратегии

и ,

если для любых произвольных смешанных стратегий и выполняется условие:

т. е. при оптимальной смешанной стратегии выигрыш игрока I наибольший, а проигрыш игрока II наименьший.

Если в платежной матрице нет седловой точки, то

,

т. е. существует положительная разность (нераспределенная разность )

- ³ 0,

и игрокам нужно искать дополнительные возможности для уверенного получения в свою пользу большей доли этой разности.

Пример

Рассмотрим игру , заданную платежной матрицей:

.

Определим, есть ли седловая точка:

, .

Оказывается, что в платежной матрице нет седловой точки и нераспределенная разность равна :

.

5.4. Отыскание оптимальных смешанных стратегий

для игр 2×2

Определение оптимальных смешанных стратегий для платежной матрицы размерностью осуществляется методом нахождения точек оптимума функции двух переменных.

Пусть вероятность выбора игроком I первой строки платежной матрицы

равна . Тогда вероятность выбора второй строки равна .

Пусть вероятность выбора игроком II первого столбца равна . Тогда вероятность выбора второго столбца равно .

Величина платежа игроку I игроком II равна:

Экстремальная величина выигрыша игрока I и проигрыша игрока II соответствует условиям:

;

.

Таким образом, оптимальные смешанные стратегии игроков I и II соответственно равны:

5.5. Геометрическое решение игр 2× n

При увеличении размерности платежной матрицы с до уже нельзя определение оптимальных смешанных стратегий свести к нахождению оптимума функции двух переменных. Однако учитывая то, что один из игроков имеет только две стратегии, можно использовать геометрическое решение.

Основные этапы нахождения решения игры сводятся к следующему.

На плоскости введем систему координат. На оси отложим отрезок . Из левого и правого концов этого отрезка проведем перпендикуляры.


Левый и правый концы единичного отрезка соответствуют двум стратегиям и , имеющимся у игрока I. На проведенных перпендикулярах будем откладывать выигрыши этого игрока. Например, для платежной матрицы


такими выигрышами игрока I при выборе стратегии будут и , а при выборе стратегии будут и .

Соединим отрезками прямой точки выигрыша игрока I, соответствующие стратегиям игрока II. Тогда образованная ломанная линия, ограничивающая график снизу, определяет нижнюю границу выигрыша игрока I.



Находим оптимальную смешанную стратегию игрока I

,

которая соответствует точке на нижней границе выигрыша игрока I с максимальной ординатой.

Обратим внимание на то, что в рассматриваемом примере, пользуясь только двумя стратегиями и , соответствующими прямым, пересекающимся в найденной точке на нижней границе выигрыша игрока I, игрок II может воспрепятствовать игроку I получить больший выигрыш.

Таким образом, игра сводится к игре и оптимальной смешанной стратегией игрока II в рассматриваемом примере будет

,

где вероятность находится так же, как в игре :

5.6. Решение игр m × n

Если матричная игра не имеет решения в чистых стратегиях (т. е. нет седловой точки) и из-за большой размерности платежной матрицы не может быть решена графически, то для получения решения используют метод линейного программирования .

Пусть задана платежная матрица размерности :

.

Необходимо найти вероятности , с которыми игрок I должен выбирать свои ходы для того, чтобы данная смешанная стратегия гарантировала ему выигрыш не менее величины независимо от выбора ходов игроком II.

Для каждого выбранного хода игроком II выигрыш игрока I определяется зависимостями:

Разделим обе части неравенств на и введем новые обозначения:

Равенство

Примет вид:

Поскольку игрок I стремится максимизировать выигрыш , то обратную величину нужно минимизировать. Тогда задача линейного программирования для игрока I примет вид:

при ограничениях

Аналогично строится задача для игрока II как двойственная:

при ограничениях

Решая задачи симплекс-методом, получаем:

,

5.7. Особенности решения матричных игр

Прежде, чем решать задачу по отысканию оптимальных стратегий, следует проверить два условия:

Можно ли упростить платежную матрицу;

Имеет ли платежная матрица седловую точку.

Рассмотрим возможность упрощения платежной матрицы:

В связи с тем, что игрок I стремится получить наибольший выигрыш, то из платежной матрицы можно вычеркнуть - ую строку, т. к. он никогда не воспользуется этим ходом, если выполняется следующее соотношение с любой другой - ой строкой:

Аналогично, стремясь к наименьшему проигрышу, игрок II никогда не выберет в качестве хода - ый столбец в платежной матрице и этот столбец можно вычеркнуть, если выполняется следующее соотношение с любым другим - ым столбцом:

Наиболее простым решением игры является наличие в упрощенной платежной матрице седловой точки, которая отвечает следующему условию (по определению):

Пример

Дана платежная матрица:

.

Упрощение платежной матрицы:

Наличие седловой точки:

5.8. Игра с природой

В отличие от задач теории игр в задачах теории статистических решений неопределенная ситуация не имеет антагонистической конфликтной окраски и зависит от объективной действительности, которую принято называть "природой" .

В матричных играх с природой в качестве игрока II выступает совокупность неопределенных факторов, влияющих на эффективность принимаемых решений.

Матричные игры с природой отличаются от обычных матричных игр только тем, что при выборе оптимальной стратегии игроком I уже нельзя ориентироваться на то, что игрок II будет стремиться минимизировать свой проигрыш. Поэтому наряду с платежной матрицей вводится матрица рисков :

гдe - величина риска игрока I при использовании хода в условиях, равная разности между выигрышем , который игрок I получил бы, если бы знал, что установится условие , т. е. , и выигрышем , который он получит, не зная при выборе хода , что установится условие .

Таким образом, платежная матрица однозначно преобразуется в матрицу рисков, а обратное преобразование неоднозначно.

Пример

Матрица выигрышей:

.

Матрица рисков:

Возможны две постановки задачи о выборе решения в матричной игре с природой :

Максимизация выигрыша;

Минимизация риска.

Задача принятия решений может быть поставлена для одного из двух условий:

- в условиях риска , когда известна функция распределения вероятностей стратегий природы, например, случайной величины появления каждой из предполагаемых конкретных экономических ситуаций;

- в условиях неопределенности , когда такая функция распределения вероятностей неизвестна.

5.9. Решение задач теории статистических решений

в условиях риска

При принятии решений в условиях риска игроку I известны вероятности наступления состояний природы.

Тогда игроку I целесообразно выбрать ту стратегию, для которой среднее значение выигрыша, взятое по строке, максимально :

.

При решении этой задачи с матрицей риска получаем такое же решение, соответствующее минимальному среднему риску :

.

5.10. Решение задач теории статистических решений

в условиях неопределенности

При принятии решений в условиях неопределенности можно воспользоваться следующими критериями :

Максиминным критерием Вальда;

Критерием минимального риска Севиджа;

Критерием пессимизма - оптимизма Гурвица;

Принципом недостаточного основания Лапласа.

Рассмотрим максиминный критерий Вальда .

Игра с природой ведется как с разумным агрессивным противником, т. е. осуществляется перестраховочный подход с позиции крайнего пессимизма для платежной матрицы:

.

Рассмотрим критерий минимального риска Севиджа .

Аналогичный предыдущему подход с позиции крайнего пессимизма для матрицы риска:

.

Рассмотрим критерий пессимизма - оптимизма Гурвица .

Предлагается возможность не руководствоваться ни крайним пессимизмом и ни крайним оптимизмом:

где степень пессимизма ;

при - крайний оптимизм,

при - крайний пессимизм.

Рассмотрим принцип недостаточного основания Лапласа .

Полагается, что все состояния природы равновероятны:

,

.

Выводы по пятому разделу

В матричной игре участвуют два игрока и функция выигрыша, служащая для определения величины платежа проигравшего игрока выигравшему, представляется в виде платежной матрицы. Условились, что игрок I - выбирает в качестве хода одну из строк платежной матрицы, а игрок II – один из ее столбцов. Тогда на пересечении выбранных строки и столбца этой матрицы стоит числовая величина платежа игроку I от игрока II (если эта величина положительна, то игрок I действительно выиграл, а если она отрицательна, то выиграл по существу игрок II).

Если в платежной матрице имеется седловая точка, то игроки обладают оптимальными чистыми стратегиями, т. е. для выигрыша каждый из них должен повторять свой один оптимальный ход. Если же седловой точки нет, то для выигрыша каждый из них должен воспользоваться оптимальной смешанной стратегией, т. е. использовать смесь ходов, каждый из которых должен производиться с оптимальной вероятностью.

Отыскание оптимальных смешанных стратегий для игр 2×2 производится вычислением оптимальных вероятностей по известным формулам. С помощью геометрического решения игр 2×n определение оптимальных смешанных стратегий в них сводится к отысканию оптимальных смешанных стратегий для игр 2×2. Для решения игр m×n используют метод линейного программирования для нахождения оптимальных смешанных стратегий в них.

Некоторые платежные матрицы поддаются упрощению, в результате которого уменьшается их размерность за счет удаления строк и столбцов, соответствующих неперспективным ходам.

Если в качестве игрока II выступает совокупность неопределенных факторов, зависящих от объективной действительности и не имеющих антагонистической конфликтной окраски, то такую игру называют игрой с природой, а для ее решения используют задачи теории статистических решений. Тогда наряду с платежной матрицей вводится матрица рисков и возможны две постановки задачи о выборе решения в матричной игре с природой: максимизация выигрыша и минимизация риска.

Решение задач теории статистических решений в условиях риска показывает, что игроку I целесообразно выбрать ту стратегию, для которой среднее значение (математическое ожидание) выигрыша, взятое по строке платежной матрицы, максимально, или (что то же самое) среднее значение (математическое ожидание) риска, взятое по строке матрицы рисков, минимально. При принятии решений в условиях неопределенности используют следующие критерии: максиминный критерий Вальда, критерий минимального риска Севиджа, критерий пессимизма-оптимизма Гурвица, принцип недостаточного основания Лапласа.

Вопросы для самопроверки

Как определяются основные понятия теории игр: ход, стратегия и функция выигрыша?

В виде чего представляется в матричной игре функция выигрыша?

Почему матричную игру называют с нулевой суммой?

Как представляется процесс игры в матричную игру?

Какая игра называется игрой m×n?

Какая стратегия матричной игры называется оптимальной?

Какая оптимальная стратегия матричной игры называется чистой?

Что означает седловая точка платежной матрицы?

Какая оптимальная стратегия матричной игры называется смешенной?

Как представляется смешанная стратегия игрока?

Что представляет собой величина платежа игроку I от игрока II, выбравшим смешанные стратегии?

Какие смешанные стратегии называют оптимальными?

Что означает нераспределенная разность?

С помощью какого метода находятся оптимальные смешанные стратегии для игр 2×2?

Каким образом находятся оптимальные смешанные стратегии для игр 2×n?

С помощью какого метода находятся оптимальные смешанные стратегии для игр m×n?

В чем заключаются особенности решения матричных игр?

Что означает упрощение платежной матрицы и при каких условиях оно может быть осуществлено?

Какую матричную игру легче решать, когда платежная матрица имеет или не имеет седловую точку?

Какие задачи теории игр относятся к задачам теории статистических решений?

Как платежная матрица преобразуется в матрицу рисков?

Какие две постановки задачи о выборе решений возможны в матричной игре с природой?

Для каких двух условий могут быть поставлены задачи принятия решений в матричной игре с природой?

Какую стратегию целесообразно выбрать игроку I при решении задачи теории статистических решений в условиях риска?

Какими критериями принятия решений можно воспользоваться при решении задач теории статистических решений в условиях неопределенности?

Примеры решения задач

1. В платежной матрице указаны величины прибыли предприятия при реализации им разных видов изделий (столбцы) в зависимости от установившегося спроса (строки). Необходимо определить оптимальную стратегию предприятия по выпуску изделий разных видов и соответствующий максимальный (в среднем) доход от их реализации.

Обозначим заданную матрицу через и введем переменные . Будем также использовать матрицу (вектор) . Тогда и , т. е. .

Рассчитывается обратная матрица :

Находятся значения:

.

Рассчитываются вероятности:

Определяется средний доход от реализации:

.

2. Фирма «Фармацевт» - производитель медикаментов и биомедицинских изделий в регионе. Известно, что пик спроса на некоторые лекарственные препараты приходится на летний период (препараты сердечно-сосудистой группы, анальгетики), на другие – на осенний и весенний периоды (антиинфекционные, противокашлевые).

Затраты на 1 усл. ед. продукции за сентябрь-октябрь составили: по первой группе (препараты сердечно-сосудистые и анальгетики) – 20 р.; по второй группе (антиинфекционные, противокашлевые препараты) – 15 р.

По данным наблюдений за несколько последних лет службой маркетинга фирмы установлено, что она может реализовать в течение рассматриваемых двух месяцев в условиях теплой погоды 3050 усл. ед. продукции первой группы и 1100 усл. ед. продукции второй группы; в условиях холодной погоды – 1525 усл. ед. продукции первой группы и 3690 усл. ед. второй группы.

В связи с возможными изменениями погоды ставится задача – определить стратегию фирмы в выпуске продукции, обеспечивающую максимальный доход от реализации при цене продажи 40 р. за 1 усл. ед. продукции первой группы и 30 р. – второй группы.

РЕШЕНИЕ. Фирма располагает двумя стратегиями:

В этом году будет теплая погода;

Погода будет холодная.

Если фирма примет стратегию и в действительности будет теплая погода (стратегия природы ), то выпущенная продукция (3050 усл. ед. препаратов первой группы и 1100 усл. ед. второй группы) будет полностью реализована и доход составит

3050×(40-20)+1100×(30-15)=77500 р.

В условиях прохладной погоды (стратегия природы ) препараты второй группы будут проданы полностью, а первой группы только а количестве 1525 усл. ед. и часть препаратов останется нереализованной. Доход составит

1525×(40-20)+1100×(30-15)-20×()=16500 р.

Аналогично, если форма примет стратегию и в действительности будет холодная погода, то доход составит

1525×(40-20)+3690×(30-15)=85850 р.

При теплой погоде доход составит

1525×(40-20)+1100×(30-15)-() ×15=8150 р.

Рассматривая фирму и погоду в качестве двух игроков, получим платежную матрицу

,

Цена игры лежит в диапазоне

Из платежной матрицы видно, что при всех условиях доход фирмы будет не меньше 16500 р., но если погодные условия совпадут с выбранной стратегией, то доход фирмы может составить 77500 р.

Найдем решение игры.

Обозначим вероятность применения фирмой стратегии через , стратегии - через , причем . Решая игру графически методом, получим , при этом цена игры р.

Оптимальный план производства лекарственных препаратов составит

Таким образом, фирме целесообразно производить в течение сентября и октября 2379 усл. ед. препаратов первой группы и 2239,6 усл. ед. препаратов второй группы, тогда при любой погоде она получит доход не менее 46986 р.

В условиях неопределенности, если не представляется возможным фирме использовать смешанную стратегию (договоры с другими организациями), для определения оптимальной стратегии фирмы используем следующие критерии:

Критерий Вальде:

Критерий Гурвица: для определенности примем , тогда для стратегии фирмы

для стратегии

фирме целесообразно использовать стратегию .

Критерий Сэвиджа. Максимальный элемент в первом столбце – 77500, во втором столбце – 85850.

Элементы матрицы рисков находятся из выражения

,

откуда , ,

Матрица рисков имеет вид

,

целесообразно использовать стратегию или .

Следовательно, фирме целесообразно применять стратегию или .

Отметим, что каждый из рассмотренных критериев не может быть признан вполне удовлетворительным для окончательного выбора решений, однако их совместный анализ позволяет более наглядно представить последствия принятия тех или иных управленческих решений.

При известном распределении вероятностей различных состояний природы критерием принятия решения является максимум математического ожидания выигрыша.

Пусть известно для рассматриваемой задачи, что вероятности теплой и холодной погоды равны и составляют 0,5, тогда оптимальная стратегия фирмы определяется так:

Фирме целесообразно использовать стратегию или .

Задания для самостоятельной работы

1. Предприятие может выпускать три вида продукции (А, Б и В), получая при этом прибыль, зависящую от спроса. Спрос в свою очередь может принимать одно из четырех состояний (I, II, III и IV). В следующей матрице элементы характеризуют прибыль, которую получит предприятие при выпуске -ой продукции и -ом состоянии спроса:

Загрузка...
Top