Определение перпендикуляра к плоскости. Перпендикулярность прямой и плоскости определение прямая называется перпендикулярной к плоскости, если она перпендикулярна к любой прямой, лежащей в этой

План-конспект урока по геометрии в 10 классе на тему «Перпендикулярность прямой и плоскости»

Цели урока:

обучающие

    введение признака перпендикулярности прямой и плоскости;

    формировать представления учащихся о перпендикулярности прямой и плоскости, их свойствах;

    формировать умения учащихся решать типичные задачи по теме, умения доказывать утверждения;

развивающие

    развивать самостоятельность, познавательную активность;

    развивать умение анализировать, делать выводы, систематизировать полученную информацию,

    развивать логическое мышление;

    развивать пространственное воображение.

воспитательные

    воспитание культуры речи учащихся, усидчивости;

    прививать учащимся интерес к предмету.

Тип урока: Урок изучения и первичного закрепления знаний.

Формы работы учащихся: фронтальный опрос.

Оборудование: компьютер, проектор, экран.

Литература: «Геометрия 10-11», Учебник. Атанасян Л.С. и др.

(2009, 255с.)

План урока:

Организационный момент (1 минуты);

Актуализация знаний (5 минут);

Изучение нового материала (15 минут);

Первичное закрепление изученного материала (20 минуты);

Подведение итогов (2 минуты);

Домашнее задание (2 минуты).

Ход урока.

Организационный момент (1 минуты)

Приветствие учеников. Проверка готовности учащихся к уроку: проверка наличия тетрадей, учебников. Проверка отсутствующих на уроке.

Актуализация знаний (5 минут)

Учитель. Какая прямая называется перпендикулярной к плоскости?

Ученик. Прямая перпендикулярная любой прямой лежащей в этой плоскости называется прямой перпендикулярной этой плоскости.

Учитель. Как звучит лемма о двух параллельных прямых перпендикулярных третьей?

Ученик. Если одна из двух параллельных прямых перпендикулярна к третьей прямой, то и другая прямая перпендикулярна к этой прямой.

Учитель. Теорема о перпендикулярности двух параллельных прямых к плоскости.

Ученик. Если одна из двух параллельных прямых перпендикулярна к плоскости, то и вторая прямая перпендикулярна к этой плоскости.

Учитель. Как звучит теорема обратная данной?

Ученик. Если две прямые перпендикулярный одной и той же плоскости, то они параллельны.

Проверка домашнего задания

Домашнее задание проверяется, если у учеников возникли трудности при его решении.

Изучение нового материала (15 минут)

Учитель. Мы с вами знаем, что если прямая перпендикулярная к плоскости, то она будет перпендикулярна к любой прямой лежащей в этой плоскости, но в определении перпендикулярность прямой к плоскости дается как факт. На практике же часто приходится определить будет ли являться прямая перпендикулярной к плоскости или нет. Такие примеры можно привести из жизни: при строительстве зданий сваи вбивают перпендикулярно поверхности земли, иначе конструкция может рухнуть. Определением прямой перпендикулярной плоскости в этом случае воспользоваться невозможно. Почему? Сколько прямых можно провести в плоскости?

Ученик. В плоскости можно провести бесконечно много прямых

Учитель. Правильно. И проверить перпендикулярность прямой к каждой отдельной плоскости невозможно, так как это займет бесконечно много времени. Для того чтобы понять является ли прямая перпендикулярной к плоскости введем признак перпендикулярности прямой и плоскости. Запишите в тетради. Если прямая перпендикулярна к двум пересекающимся прямым, лежащим в плоскости, то она перпендикулярна к этой плоскости.

Запись в тетради. Если прямая перпендикулярна к двум пересекающимся прямым, лежащим в плоскости, то она перпендикулярна к этой плоскости.

Учитель. Таким образом нам нет необходимости проверять перпендикулярность прямой для каждой прямой плоскости, достаточно проверить перпендикулярность лишь для двух прямых этой плоскости.

Учитель. Давайте докажем это признак.

Дано: p и q – прямые, p q = O , a p , a q , p ϵ α, q ϵ α.

Доказать: a α.

Учитель. И все таки для доказательства воспользуемся определением прямой перпендикулярной плоскости, как оно звучит?

Ученик. Если прямая перпендикулярна плоскости, то она перпендикулярна любой прямой лежащей в этой плоскости.

Учитель. Правильно. Начертим в плоскости α любую прямую m . Проведем через точку О прямую l ║ m . На прямой a отметим точки А и В так чтобы точка О была серединой отрезка АВ. Проведем прямую z таким образом, чтобы она пересекала прямые p , q , l , точки пересечения этих прямых обозначим P , Q , L соответственно. Соединим концы отрезка АВ с точками P ,Q и L .

Учитель. Что мы можем сказать о треугольниках ∆APQ и ∆BPQ ?

Ученик. Эти треугольники будут равны (по 3 признаку равенства треугольников).

Учитель. Почему?

Ученик. Т.к. прямые p и q – серединные перпендикуляры, то AP = BP , AQ = BQ , а сторона PQ – общая.

Учитель. Правильно. Что мы можем сказать о треугольниках ∆APL и ∆BPL ?

Ученик. Эти треугольники тоже будут равны (по 1 признаку равенства треугольников).

Учитель. Почему?

Ученик. AP = BP , PL – общая сторона, APL =  BPL (из равенства ∆ APQ и ∆ BPQ )

Учитель. Правильно. А значит AL = BL . Значит каким будет ∆ALB ?

Ученик. Значит ∆ALB будет равнобедренным.

Учитель. LO – медиана в ∆ALB , значит чем она будет являться в этом треугольнике?

Ученик. Значит LO будет являться еще и высотой.

Учитель. Следовательно прямая l будет перпендикулярна прямой a . А так как прямая l – любая прямая принадлежащая плоскости α, то по определению прямая a α. Что и требовалось доказать.

Доказывается при помощи призентации

Учитель. А что делать если прямая a не пересекает точку О, но остается перпендикулярной к прямым p и q ? Если прямая а пересекает любую другую точку данной плоскости?

Ученик. Можно построить прямую а 1 , которая будет параллельна прямой а, будет пересекать точку О, а по лемме о двух параллельных прямых перпендикулярных третьей можно доказать, что a 1 ⊥ p , a 1 ⊥ q .

Учитель. Правильно.

Первичное закрепление изученного материала (20 минут)

Учитель. Для того чтобы закрепить изученный нами материал решим номер 126. Прочтите задание.

Ученик. Прямая МВ перпендикулярна к сторонам АВ и ВС треугольника АВС. Определите вид треугольника МВD , где D – произвольная точка прямой АС.

Рисунок.

Дано: ∆ ABC , MB BA , MB BC , D ϵ AC .

Найти: ∆MBD.

Решение.

Учитель. Можно через вершины треугольника провести плоскость?

Ученик. Да, можно. Плоскость можно провести по трем точкам.

Учитель. Как будут расположены прямые ВА и СВ относительно этой плоскости?

Ученик. Эти прямые будут лежать в этой плоскости.

Учитель. Получается, что мы имеем плоскость, и в ней две пересекающиеся прямые. Как относится прямая МВ к этим прямым?

Ученик. Прямая МВ ⊥ ВА, МВ ⊥ ВС.

Запись на доске и в тетрадях. Т.к. МВ ⊥ ВА, МВ ⊥ ВС

Учитель. Если прямая перпендикулярна двум пересекающимся прямым лежащим в плоскости, то прямая будет относится к этой плоскости?

Ученик. Прямая МВ будет перпендикулярна плоскости АВС.

⊥ АВС.

Учитель. Точка D – произвольная точка на отрезке АС, значит как будет относится прямая BD к плоскости АВС?

Ученик. Значит BD принадлежит плоскости АВС.

Запись на доске и в тетрадях. Т.к. BD ϵ ABC

Учитель. Какими относительно друг друга будут являться прямые МВ и BD ?

Ученик. Эти прямые будут перпендикулярны по определению прямой перпендикулярной к плоскости.

Запись на доске и в тетрадях. ↔ МВ ⊥ BD

Учитель. Если МВ перпендикулярно BD , то каким будет треугольник MBD ?

Ученик. Треугольник MBD будет прямоугольным.

Запись на доске и в тетрадях. ↔ ∆MBD – прямоугольный.

Учитель. Правильно. Решим номер 127. Прочтите задание.

Ученик. В треугольнике ABC сумма углов A и B равна 90°. Прямая BD перпендикулярна к плоскости ABC . Докажите, что CD AC.

Ученик выходит к доске. Рисует чертеж.

Запись на доске и в тетради.

Дано: ∆ ABC ,  A +  B = 90°, BD ABC .

Докажите: CD AC .

Доказательство:

Учитель. Чему равна сумма углов треугольника?

Ученик. Сумма углов в треугольнике равна 180°.

Учитель. Чему будет равен угол C в треугольнике ABC ?

Ученик. Угол C в треугольнике ABC будет равен 90°.

Запись на доске и в тетрадях.  C = 180° - A - B = 90°

Учитель. Если угол С равен 90°, то как относительно друг друга будут располагаться прямые АС и ВС?

Ученик. Значит АС ⊥ ВС.

Запись на доске и в тетрадях. ↔ АС ⊥ ВС

Учитель. Прямая BD перпендикулярна плоскости ABC . Что из этого следует?

Ученик. Значит BD перпендикулярно любой прямой из ABC .

BD ⊥ ABC BD перпендикулярно любой прямой из ABC (по определению)

Учитель. В соответствии с этим, как будут относится прямые BD и AC ?

Ученик. Значит эти прямые будут перпендикулярны.

BD ⊥ AC

Учитель. АС перпендикулярно двум пересекающимся прямым лежащим в плоскости DBC , но АС не проходит через точку пересечения. Как это исправить?

Ученик. Через точку В проведем прямую а параллельную АС. Так как АС перпендикулярно BC и BD , то и а будет перпендикулярно BC и BD по лемме.

Запись на доске и в тетрадях. Через точку В проведем прямую а ║АС ↔ а ⊥ BC , а ⊥ BD

Учитель. Если прямая а будет перпендикулярно BC и BD , то что можно сказать о взаимном расположении прямой а и плоскости BDC ?

Ученик. Значит прямая а будет перпендикулярна плоскости BDC , а значит и прямая АС будет перпендикулярна BDC .

Запись на доске и в тетрадях. ↔ а ⊥ BDC ↔ АС ⊥ BDC .

Учитель. Если АС перпендикулярна BDC , то как относительно друг друга будут располагаться прямые АС и DC ?

Ученик. АС и DC будут перпендикулярны по определению прямой перпендикулярной к плоскости.

Запись на доске и в тетрадях. Т.к. АС ⊥ BDC ↔ АС ⊥ DC

Учитель. Молодец. Решим номер 129. Прочитайте задание.

Ученик. Прямая AM перпендикулярна к плоскости квадрата ABCD , диагонали которого пересекаются в точке О. Докажите, что: а) прямая BD перепендикулярна к плоскости AMO ; б) MO BD .

К доске выходит ученик. Рисует чертеж.

Запись на доске и в тетради.

Дано: ABCD – квадрат, AM ABCD , AC BD = O

Доказать: BD AMO, MO BD

Доказательство:

Учитель. Нам нужно доказать чтопрямая BD AMO . Какие условия для этого должны выполняться?

Ученик. Нужно чтобы прямая BD была перпендикулярна хотябы двум пересекающимся прямым из плоскости AMO .

Учитель. В условии сказано что BD перпендикулярна двум пересекающимся прямым из AMO ?

Ученик. Нет.

Учитель. Но мы знаем, что AM перпендикулярна ABCD . Какой вывод можно из этого сделать?

Ученик. Значит, что AM перпендикулярна любой прямой из этой плоскости, тоесть AM перпендикулярна BD .

AM ABCD AM BD (по определению).

Учитель. Одна прямая перпендикулярна BD есть. Обратите внимание на квадрат, как будут распологаться относительно друг друга прямые AC и BD ?

Ученик. AC будет перпендикулярна BD по свойству диагоналей квадрата.

Запись на доске и в тетради. Т.к. ABCD – квадрат, то AC BD (по свойству диагоналей квадрата)

Учитель. Мы нашли две пересекающиеся прямые лежащие в плоскости AMO перпендикулярные прямой BD . Что из этого следует?

Ученик. Значит, что BD перпендикулярна плоскости AMO .

Запись на доске и в тетрадях. Т.к. AC BD и AM BD BD AMO (по признаку)

Учитель. Какая прямая называется прямой перпендикулярной к плоскости?

Ученик. Прямая называется перпендикулярной к плоскости, если она перпендикулярна любой прямой из этой плоскости.

Учитель. А значит как взаимо расположены прямые BD и OM ?

Ученик. Значит BD перпендикулярно OM . Что и требовалось доказать.

Запись на доске и в тетрадях. ↔ BD MO (по определению). Что и требовалось доказать.

Подведение итогов (2 минуты)

Учитель. Сегодня мы изучили признак перпендикулярности прямой и плоскости. Как он звучит?

Ученик. Если прямая перпендикулярна двум пересекающимся прямым лежащим в плоскости, то эта прямая перпендикулярна этой плоскости.

Учитель. Правильно. Мы научились применять этот признак при решении задач. Кто отвечал у доски и помогал с места молодцы.

Домашнее задание (2 минуты)

Учитель. Параграф 1, пункты 15 -17, учить: лемму, определение и все теоремы. №130, 131.

Перпендикулярность прямой и плоскости.

1. Перпендикулярные прямые в пространстве.

Определение. Две прямые в пространстве называются перпендикулярными (взаимно перпендикулярными), если угол между прямыми равен 90°.
Обозначение перпендикулярности прямых а и b: a⊥b

Перпендикулярные прямые могут пересекаться, а могут быть скрещивающимися.

Лемма перпендикулярности двух параллельных прямых к третьей прямой.

Если одна из двух параллельных прямых перпендикулярна к третьей прямой, то и другая прямая перпендикулярна к этой прямой.

Обратите внимание, что следующее утверждение планиметрии в стереометрии не действует:
Если две прямые перпендикулярны к третьей, то они параллельны.

На рисунке видно, что две прямые a и b перпендикулярны прямой с , но не параллельны .

2.Параллельные прямые, перпендикулярные к плоскости.

Определение. Прямая называется перпендикулярной к плоскости , если она перпендикулярна ко всем прямым, лежащим в этой плоскости.
Обозначение перпендикулярности прямой и плоскости: a⊥ γ.

На рисунке прямая а перпендикулярна плоскости γ. Из определения следует, что прямая a перпендикулярна каждой прямой, лежащей в этой плоскости.

Теорема.
Если одна из двух параллельных прямых перпендикулярна к плоскости, то и другая прямая перпендикулярна к этой плоскости.


Теорема. Если две прямые перпендикулярны к плоскости, то они параллельны.

3. Признак перпендикулярности прямой и плоскости

Если прямая перпендикулярна к двум пересекающимся прямым, лежащим в плоскости, то она перпендикулярна к этой плоскости.

ГПОУ «Усинский политехнический техникум»

Открытый урок по геометрии

Тема «Перпендикулярность прямой и плоскости».

Выполнил: преподаватель математики Мельникова Е.А.

Усинск, 2016 г.

Тип урока: Урок-семинар

Цели урока :

Обобщить, закрепить и систематизировать знания обучающихся по данной теме, умения применять эти знания при решении задач; показать практическую значимость изучаемого материала; изучить связь между отношениями параллельности и перпендикулярности в пространстве; показать межпредметную связь.

Воспитывать культуру устной и письменной речи, способствовать воспитанию эстетического вкуса, прививать интерес к предмету математики.

Развивать пространственное и логическое мышление.

Оборудование к уроку: карточки с названиями Теоретики, Практики, Исследователи, задания группам, ПК, проектор.

План урока.

I. Организация учащихся.

Обучающимся предлагаются карточки с названиями Теоретики, Практики, Исследователи и производится деление на 3 группы.

II. Постановка целей и задач урока.

Говорят, что математика- наука неинтересная, что математика - сухая наука, что о ней можно говорить только в кабинете математики, на уроке. Нет, жизнь доказывает обратное: математика повсюду вокруг нас. Послушайте, что пишет об этом Роман Бухараев в стихотворении “Геометрия трав”.

Математик несбывшийся, странник,
Оглянись, удивляясь стократ:
В травах - срез волчеца - пятигранник,
А в сеченьи душицы - квадрат.
Все на свете покажется внове
Под гольцом, чья вершина в снегу:
Водосбор - треуголен в основе
На цветущем альпийском лугу!
Где же круг?
Возле иглистой розы.
Там, где луг поднебесный скалист,
Вижу, с ветром играет березы
Треугольно-ромбический лист.

Но я соглашусь с тем, что математика наука точная, требующая четкости определений и доказательства фактов. И поэтому сейчас предлагаю от лирики перейти к практике.

Вы изучили очень важную тему геометрии “Перпендикулярность прямой и плоскости”. В результате изучения этой темы вы должны:

знать определения перпендикулярных прямых и прямой, перпендикулярной к плоскости.

уметьформировать и доказывать теоремы (прямую и обратную) о параллельных прямых, прямых, перпендикулярных к плоскости, признак перпендикулярности прямой и плоскости, теорему о прямой, перпендикулярной к плоскости.

Решать задачи типа 119, 121, 126, 128, 131 (уч. “Геометрия 10-11”, автор Атанасян Л.С.)

Преподаватель знакомит с целями урока.

III. Закрепление знаний и умений.

На уроке будут работать 3 группы «Теоретики», «Практики», «Исследователи».

Преподаватель дает задание группам, приготовленное на листах. Указывает на порядок оценивания.

Перед началом работы групп фронтальная проверка готовности.

Каково может быть взаимное расположение 2-х прямых в пространстве? (Прямые могут пересекаться, скрещиваться и быть параллельными.)

Какие две прямые называют параллельными? (Параллельные прямые называются прямые , которые лежат в одной плоскости и либо совпадают, либо не пересекаются.)

Какие две прямые называют скрещивающимися? (Прямые называются скрещивающимися, если одна из прямых лежит в плоскости, а другая эту плоскость пересекает в точке не принадлежащей первой прямой.)

Если угол между двумя прямыми 900 , как их называют? (Перпендикулярные прямые)

Какую прямую называют перпендикулярной к плоскости? (Прямая называется перпендикулярной к плоскости, если она перпендикулярна любой прямой, лежащей в этой плоскости.

Верно ли утверждение:

a) Любая прямая перпендикулярная к плоскости, пересекает эту плоскость? (верно)
b) Любая прямая, пересекающая плоскость, перпендикулярна к этой плоскости? (неверно)
c) Если прямая не перпендикулярна к данной плоскости, то она не пересекает эту плоскость? (неверно)

Прямая а параллельна прямой в и не пересекает плоскость?. Может ли прямая в быть перпендикулярной к плоскости? Ответ обоснуйте. (не может быть, т.к если прямая в будет перпендикулярной плоскости, то и прямая а тоже перпендикулярна плоскости, что невозможно, т.к по условию прямая а не пересекает плоскость, следовательно она параллельна плоскости)

1. Задания для группы «Теоретики».

Доказать лемму о перпендикулярности двух параллельных прямых к третьей прямой.

Лемма . Если одна из двух параллельных прямых перпендикулярна к третьей прямой, то и другая прямая перпендикулярна к этой прямой.

Дано:a ‖ b, a ⊥ c

Доказать: b ⊥ c

Доказательство:

Через точку М пространства, не лежащую на данных прямых, проведем прямые МА и МС, параллельные соответственно прямым а и с. Так как а ⊥ с, то ∠ АМС=90о.

По условию, b ‖ a, а по построению а ‖ МА, поэтому b ‖ МА.

Итак, прямые b и с параллельны соответственно прямым МА и МС, угол между ними равен 90о, т.е. b ‖ МА, с ‖ МС, угол между МА и МС равен 90о

Это означает, что угол между прямыми b и с также равен 90о, то есть b ⊥ с. Лемма доказана.

Доказать теоремы (прямую и обратную) о параллельных прямых, прямых, перпендикулярных к плоскости.

Теорема: (прямая) Если одна из двух параллельных прямых перпендикулярна к плоскости, то и другая прямая перпендикулярна к этой плоскости.

Запись на доске и в тетрадях:

Дано: а ‖ а1, а ⊥ α

Доказать, что а1 ⊥ α

Доказательство:

Проведем какую-нибудь прямую x в плоскости α, т.е. x ∊ α.Так как а ⊥ α, то а ⊥ x.

По лемме о перпендикулярности двух параллельных прямых к третьей а1 ⊥ x.

Таким образом, прямая а1 перпендикулярна к любой прямой, лежащей в плоскости α, т. е. а1 ⊥ α. Теорема доказана.

Теорема: (обратная) Если две прямые перпендикулярны к плоскости, то они параллельны.

Дано: а ⊥ α, b ⊥ α

Доказать, что а ‖ b

Доказательство:

Через какую-нибудь точку М прямой b проведем прямую b1, параллельную прямой а.

М ∊ b, M ∊ b1, b1 ‖ a. По предыдущей теореме b1 ⊥ α.

Докажем, что прямая b1 совпадает с прямой b. Тем самым будем доказано, что а ‖ b. Допустим, что прямые b1 и b не совпадают. Тогда в плоскости β, содержащей прямые b и b1, через точку М проходят две прямые, перпендикулярные к прямой с, по которой пересекаются плоскости α и β. Но это невозможно, следовательно, а ‖ b, т.е. b ∊ β, b1 ∊β, α β=c (невозможно)→ а ‖ b.

Сформировать и провести анализ доказательства признака перпендикулярности прямой и плоскости.

Признак перпендикулярности прямой и плоскости: Если прямая перпендикулярна двум пересекающимся прямым, лежащим в плоскости, то она перпендикулярна и самой плоскости

По окончании группы «Теоретики» преподаватель предоставляет слово обучащемуся с исторической справкой «Провешивание прямой».

Для проведения длинных отрезков прямых (при прокладывании трассы шоссейной или железной дороги, линий электропередач и т.д.) применяется способ, называемый провешиванием прямой, который заключается в использовании всех - шестов, имеющих длину около 2 м., заостренных с одного конца для того, чтобы их можно было воткнуть в землю. Если нужно провести прямую линию между двумя точками А и В, положение которых дано, то сначала в этих точках ставятся вехи; затем между ними устанавливается промежуточная веха С так, чтобы веха А и С закрывали веху В. Необходимо, чтобы все вехи стояли вертикально. Правильность вертикального направления проверяется с помощью отвеса. Отвес - это шнур, на конце которого укреплен небольшой груз. Казалось бы, в этой простой процедуре провешивания прямой все ясно. Но и здесь есть много вопросов, о которых следует подумать, а ответы на них дают изучение нашего курса и других дисциплин. Во-первых, почему все отвесы мира смотрят в центр Земли, а с точки зрения геометрии- определяют прямую, перпендикулярную ее поверхности? Во-вторых, веха должна быть параллельна отвесу, и тогда она также будет перпендикулярна поверхности Земли. Таким образом, все вехи перпендикулярны поверхности Земли и, значит, параллельны между собой.

Такой способ получил название провешивание прямой на местности. Слово "провешивание" - производное от слова "веха".

2. Задания для группы «Практики» .

Показать применение теории при решении задач № 126, 127, 128,131 (стр. 42 уч. “Геометрия 10-11 автор Атанасян Л.С.)

3. Задания для группы «Исследователи».

Изучить связь между отношениями параллельности и перпендикулярности в пространстве. Проверку осуществить с помощью таблицы.

Даны прямая а, перпендикулярная к плоскости α, и прямая b. Укажите взаимное расположение прямых а и b:

Если b параллельна , то……

Если b перпендикулярна , то ……

Если b параллельна или принадлежит , то…..

Если b перпендикулярна , то……

Даны прямая а, перпендикулярная к плоскости α, и плоскость .

Если параллельна , то……

Если перпендикулярна , то ……

Если параллельна а или а принадлежит , то…..

Если перпендикулярна , то……

Приведите примеры окружающей нас обстановки, иллюстрирующие перпендикулярность прямой и плоскости.

По окончании работы групп учащиеся приводят примеры расположения прямых в задачах по физике (межпредметная связь)

Вспомните о силе давления. Как она направлена? (Перпенд. плоскости поверхности).

Тело на горизонтальной поверхности. Как на любое тело на него действует сила тяжести mg? Каково ее направление?

Тело опущено в жидкость. На него оказывает действие выталкивающая сила. Каково ее направление?

IV. Подведение итогов урока. Выставление оценок.

V . Домашнее задание.

П.15 - 16, вопросы 1, 2 (стр. 57), №116, 118.

Статья раскрывает понятие о перпендикулярности прямой и плоскости, дается определение прямой, плоскости, графически иллюстрировано и показано обозначение перпендикулярных прямой и плоскости. Сформулируем признак перпендикулярности прямой с плоскостью. Рассмотрим условия, при которых прямая и плоскость будут перпендикулярны с заданными уравнениями в плоскости и трехмерном пространстве. Все будет показано на примерах.

Yandex.RTB R-A-339285-1 Определение 1

Прямая перпендикулярна к плоскости , когда она перпендикулярна к любой прямой, лежащей в этой плоскости.

Верно то, что и плоскость перпендикулярна к прямой, как и прямая к плоскости.

Перпендикулярность обозначается « ⊥ ». Если в условии задано, что прямая с перпендикулярна плоскости γ , тогда запись имеет вид с ⊥ γ .

Например, если прямая перпендикулярна к плоскости, тогда возможно провести только одну прямую, благодаря которой две смежных стены комнаты пересекутся. Прямая считается перпендикулярной к плоскости потолка. Канат, расположенный в спортзале рассматривается в качестве отрезка прямой, который перпендикулярен плоскости, в данном случае полу.

При наличии перпендикулярной прямой к плоскости, угол между прямой и плоскостью считается прямым, то есть равен 90 градусов.

Перпендикулярность прямой и плоскости – признак и условия перпендикулярности

Для нахождения выявления перпендикулярности необходимо использовать достаточное условие перпендикулярности прямой и плоскости. Оно гарантирует выполнение перпендикулярности прямой и плоскости. Данное условие считается достаточным и называют признаком перпендикулярности прямой и плоскости.

Теорема 1

Для перпендикулярности заданных прямой и плоскости достаточно, чтобы прямая была перпендикулярна двум пересекающимся прямым, которые лежат в этой плоскости.

Подробное доказательство приведено в учебнике геометрии 10 - 11 класса. Теорема применяется для решения задач, где необходимо установить перпендикулярность прямой и плоскости.

Теорема 2

При условии параллельности хоть одной из прямых плоскости, считается, что вторая прямая также перпендикулярна к данной плоскости.

Признак перпендикулярности прямой и плоскости рассматривается еще со школы, когда необходимо решить задачи по геометрии. Рассмотрим подробнее еще одно необходимое и достаточное условие, при котором прямая и плоскость будут перпендикулярны.

Теорема 3

Для того, чтобы прямая а была перпендикулярна плоскости γ , необходимым и достаточным условием является коллинеарность направляющего вектора прямой а и нормального вектора плоскости γ .

Доказательство

При a → = (a x , a y , a z) являющимся вектором прямой a , при n → = (n x , n y , n z) являющимся нормальным вектором плоскости γ для выполнения перпендикулярности нужно, чтобы прямая a и плоскость γ принадлежали выполняемости условия коллинеарности векторов a → = (a x , a y , a z) и n → = (n x , n y , n z) . Отсюда получаем, что a → = t · n → ⇔ a x = t · n x a y = t · n y a z = t · n z , t является действительным числом.

Данное доказательство основывается на необходимом и достаточном условии перпендикулярности прямой и плоскости, направляющего вектора прямой и нормального вектора плоскости.

Данное условие применимо для доказательства перпендикулярности прямой и плоскости, так как достаточно найти координаты направляющего вектора прямой и координаты нормального вектора в трехмерном пространстве, после чего производить вычисления. Используется для случаев, когда прямая определена уравнением прямой в пространстве, а плоскость уравнением плоскости некоторого вида.

Пример 1

Доказать перпендикулярность заданной прямой x 2 - 1 = y - 1 2 = z + 2 2 - 7 с плоскостью x + 2 2 + 1 y - (5 + 6 2) z .

Решение

Знаменатели канонических уравнений являются координатами направляющего вектора данной прямой. Отсюда имеем, что a → = (2 - 1 , 2 , 2 - 7) является направляющим вектором прямой x 2 - 1 = y - 1 2 = z + 2 2 - 7 .

В общем уравнении плоскости коэффициенты перед переменными x , y , z являются координатами нормального вектора данной плоскости. Отсюда следует, что n → = (1 , 2 (2 + 1) , - (5 + 6 2)) - это нормальный вектор плоскости x + 2 2 + 1 y - (5 + 6 2) z - 4 = 0

Необходимо произвести проверку выполнимости условия. Получаем, что

2 - 1 = t · 1 2 = t · 2 (2 + 1) 2 = t · (- (5 + 6 2)) ⇔ t = 2 - 1 , тогда векторы a → и n → связаны выражением a → = (2 - 1) · n → .

Это и есть коллинеарность векторов. отсюда следует, что прямая x 2 - 1 = y - 1 2 = z + 2 2 - 7 перпендикулярна плоскости x + 2 (2 + 1) y - (5 + 6 2) z - 4 = 0 .

Ответ: прямая и плоскость перпендикулярны.

Пример 2

Определить, перпендикулярны ли прямая y - 1 = 0 x + 4 z - 2 = 0 и плоскость x 1 2 + z - 1 2 = 1 .

Решение

Чтобы ответить на вопрос перпендикулярности, необходимо, чтобы было выполнено необходимое и достаточное условие, то есть для начала нужно найти вектор заданной прямой и нормальный вектор плоскости.

Из прямой y - 1 = 0 x + 4 z - 2 = 0 видно, что направляющий вектор a → - это произведение нормальных векторов плоскости y - 1 = 0 и x + 4 z - 2 = 0 .

Отсюда получаем, что a → = i → j → k → 0 1 0 1 0 4 = 4 · i → - k → .

Координаты вектора a → = (4 , 0 , - 1) .

Уравнение плоскости в отрезках x 1 2 + z - 1 2 = 1 является эквивалентным уравнению плоскости 2 x - 2 z - 1 = 0 , нормальный вектор которой равен n → = (2 , 0 , - 2) .

Следует произвести проверку на коллинеарность векторов a → = (4 , 0 , - 1) и n → = (2 , 0 , - 2) .

Для этого запишем:

4 = t · 2 0 = t · 0 - 1 = t · (- 2) ⇔ t = 2 t ∈ R ⇔ t ∈ ∅ t = 1 2

Отсюда делаем вывод о том, что направляющий вектор прямой не коллинеарен нормальному вектору плоскости. Значит, y - 1 = 0 x + 4 z - 2 = 0 - это прямая, не перпендикулярная к плоскости x 1 2 + z - 1 2 .

Ответ: прямая и плоскость не перпендикулярны.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Определение. Прямая пересекающая плоскость, называется перпендикулярной этой плоскости, если она перпендикулярна любой прямой, которая лежит в данной плоскости и проходит через точку пересечения.
Признак перпендикулярности прямой и плоскости. Если прямая перпендикулярна двум пересекающимся прямым плоскости, то она перпендикулярна данной плоскости.
Доказательство. Пусть а – прямая перпендикулярная прямым b и с , принадлежащим плоскости a . А – точка пересечения прямых. В плоскости a через точку А проведем прямую d , не совпадающую с прямыми b и с . Теперь в плоскости a проведем прямую k , пересекающую прямые d и с и не проходящую через точку А. Точки пересечения соответственно D, В и С. Отложим на прямой а в разные стороны от точки А равные отрезки АА 1 и АА 2 . Треугольник А 1 СА 2 равнобедренный, т.к. высота АС является так же и медианой (признак 1), т.е. А 1 С=СА 2 . Подобно в треугольнике А 1 ВА 2 равны стороны А 1 В и ВА 2 . Следолвательно, треугольники А 1 ВС и А 2 ВС равны по третьему признаку Поэтому равны углы А 1 ВD и А 2 ВD. Значит, равны и треугольники А 1 ВD и А 2 ВD по первому признаку . Поэтому А 1 D и А 2 D. Отсюда треугольник А 1 DА 2 равнобедренный по определению. В равнобедренном треугольнике А 1 D А 2 D А – медиана (по построению), а значит и высота, то есть угол А 1 АD прямой, а значит прямая а перпендикулярна прямой d . Таким образом можно доказать, что прямая а перпендикулярна любой прямой проходящей через точку А и принадлежащей плоскости a . Из определения следует, что прямая а перпендикулярна плоскости a .

Построение прямой перпендикулярной данной плоскости из точки, взятой вне этой плоскости.
Пусть a - плоскость, А – точка, из которой надо опустить перпендикуляр. В плоскости проведем некоторую прямую а . Через точку А и прямую а проведем плоскость b (прямая и точка определяют плоскость, причем только одну). В плоскости b из точки А опустим на прямую а перпендикуляр АВ. Из точки В в плоскости a восстановим перпендикуляр и обозначим прямую, на которой лежит этот перпендикуляр за с . Через отрезок АВ и прямую с проведем плоскость g (две пересекающиеся прямые определяют плоскость, причем только одну). В плоскости g из точки А опустим на прямую с перпендикуляр АС. Докажем, что отрезок АС – перпендикуляр к плоскости b . Доказательство. Прямая а перпендикулярна прямым с и АВ (по построению), а значит она перпендикулярна и самой плоскости g , в которой лежат эти две пересекающиеся прямые (по признаку перпендикулярности прямой и плоскости). А раз она перпендикулярна этой плоскости, то она перпендикулярна и любой прямой в этой плоскости, значит прямая а перпендикулярна АС. Прямая АС перпендикулярна двум прямым, лежащим в плоскости α : с (по построению) и а (по доказанному), значит она перпендикулярна плоскости α (по признаку перпендикулярности прямой и плоскости)

Теорема 1 . Если две пересекающиеся прямые параллельны соответственно двум перпендикулярным прямым, то они тоже перпендикулярны.
Доказательство. Пусть а и b - перпендикулярные прямые, а 1 и b 1 - параллельные им пересекающиеся прямые. Докажем, что прямые а 1 и b 1 перпендикулярны.
Если прямые а , b , а 1 и b 1 лежат в одной плоскости, то они обладают указанным в теореме свойством, как это известно из планиметрии.
Допустим теперь, что наши прямые не лежат в одной плоскости. Тогда прямые а и b лежат в некоторой плоскости α , а прямые а 1 и b 1 - в некоторой плоскости β . По признаку параллельности плоскостей плоскости α и β параллельны. Пусть С - точка пересечения прямых а и b , а С 1 - пересечения прямых а 1 и b 1 . Проведем в плоскости параллельных прямых а и а а и а 1 в точках А и А 1 . В плоскости параллельных прямых b и b 1 прямую, параллельную прямой СС 1 . Она пересечет прямые b и b 1 в точках B и B 1 .
Четырехугольники САА 1 С 1 и СВВ 1 С 1 - параллелограммы, так как у них противолежащие стороны параллельны. Четырехугольник АВВ 1 А 1 также параллелограмм. У него стороны АА 1 и ВВ 1 параллельны, потому что каждая из них параллельна прямой СС 1 .Таким образом четырехугольник лежит в плоскости, проходящей через параллельные прямые АА 1 и ВВ 1 . А она пересекает параллельные плоскости α и β по параллельным прямые АВ и А 1 В 1 .
Так как у параллелограмма противолежащие стороны равны, то АВ=А 1 В 1 , АС=А 1 С 1 , ВС=В 1 С 1 . По третьему признаку равенства треугольники АВС и А 1 В 1 С 1 равны. Итак, угол А 1 С 1 В 1 , равный углу АСВ, прямой, т.е. прямые а 1 и b 1 перпендикулярны. Ч.т.д.

Свойства перпендикулярных прямой и плоскости.
Теорема 2 . Если плоскость перпендикулярна одной из двух параллельных прямых, то она перпендикулярна и другой.
Доказательство. Пусть а 1 и а 2 - две параллельные прямые и α - плоскость, перпендикулярна прямой а 1 . Докажем, что эта плоскость перпендикулярна и прямой а 2 .
Проведем через точку А 2 пересечения прямой а 2 с плоскостью α произвольную прямую с 2 в плоскости α . Проведем в плоскости α через точку А 1 пересечения прямой а 1 с плоскостью α прямую с 1 , параллельную прямой с 2 . Так как прямая а 1 перпендикулярна плоскости α , то прямые а 1 и с 1 перпендикулярны. А по теореме 1 параллельные им пересекающиеся прямые а 2 и с 2 тоже перпендикулярны. Таким образом, прямая а 2 перпендикулярна любой прямой с 2 в плоскости α . А это значит, что прямая а 2 перпендикулярна плоскости α . Теорема доказана.

Теорема 3 . Две прямые, перпендикулярные одной и той же плоскости, параллельны между собой.
Имеем плоскость α и две перпендикулярные ей прямые а и b . Докажем, что а || b .
Через точки пересечения прямыми плоскости проведем прямую с . По признаку получаем а ^ c и b ^ c . Через прямые а и b проведем плоскость (две параллельные прямые определяют плоскость и притом только одну). В этой плоскости мы имеем два параллельные прямые а и b и секущую с . Если сумма внутренних односторонних углов равна 180 о, то прямые параллельны. У нас как раз такой случай - два прямых угла. Поэтому а || b .

Загрузка...
Top