Магнитное поле, характеристика магнитного поля. Что является источником магнитного поля


Магнитное поле Земли

Магнитное поле — это силовое поле, действующее на движущиеся электрические заряды и на тела, обладающие магнитным моментом, независимо от состояния их движения.

Источниками макроскопического магнитного поля являются намагниченные тела, проводники с током и движущиеся электрически заряженные тела. Природа этих источников едина: магнитное поле возникает в результате движения заряженных микрочастиц (электронов, протонов, ионов), а также благодаря наличию у микрочастиц собственного (спинового) магнитного момента.

Переменное магнитное поле возникает также при изменении во времени электрического поля. В свою очередь, при изменении во времени магнитного поля возникает электрическое поле. Полное описание электрического и магнитного полей в их взаимосвязи дают Максвелла уравнения. Для характеристики магнитного поля часто вводят понятие силовых линий поля (линий магнитной индукции).

Для измерения характеристик магнитного поля и магнитных свойств веществ применяют различного типа магнитометры. Единицей индукции магнитного поля в системе единиц СГС является Гаусс (Гс), в Международной системе единиц (СИ) - Тесла (Тл), 1 Тл = 104 Гс. Напряжённость измеряется, соответственно, в эрстедах (Э) и амперах на метр (А/м, 1 А/м = 0,01256 Э; энергия магнитного поля - в Эрг/см 2 или Дж/м 2 , 1 Дж/м 2 = 10 эрг/см 2 .


Компас реагирует
на магнитное поле Земли

Магнитные поля в природе чрезвычайно разнообразны как по своим масштабам, так и по вызываемым ими эффектам. Магнитное поле Земли, образующее земную магнитосферу, простирается до расстояния в 70-80 тысяч км в направлении к Солнцу и на многие миллионы км в противоположном направлении. У поверхности Земли магнитное поле равно в среднем 50 мкТл, на границе магнитосферы ~ 10 -3 Гс. Геомагнитное поле экранирует поверхность Земли и биосферу от потока заряженных частиц солнечного ветра и частично космических лучей. Влияние самого геомагнитного поля на жизнедеятельность организмов изучает магнитобиология. В околоземном пространстве магнитное поле образует магнитную ловушку для заряженных частиц высоких энергий - радиационный пояс Земли. Содержащиеся в радиационном поясе частицы представляют значительную опасность при полётах в космос. Происхождение магнитного поля Земли связывают с конвективными движениями проводящего жидкого вещества в земном ядре.

Непосредственные измерения при помощи космических аппаратов показали, что ближайшие к Земле космические тела - Луна, планеты Венера и Марс не имеют собственного магнитного поля, подобного земному. Из других планет Солнечной системы лишь Юпитер и, по-видимому, Сатурн обладают собственными магнитными полями, достаточными для создания планетарных магнитных ловушек. На Юпитере обнаружены магнитные поля до 10 Гс и ряд характерных явлений (магнитные бури, синхротронное радиоизлучение и другие), указывающих на значительную роль магнитного поля в планетарных процессах.


© Фото: http://www.tesis.lebedev.ru
Фотография Солнца
в узком спектре

Межпланетное магнитное поле - это главным образом поле солнечного ветра (непрерывно расширяющейся плазмы солнечной короны). Вблизи орбиты Земли межпланетное поле ~ 10 -4 -10 -5 Гс. Регулярность межпланетного магнитного поля может нарушаться из-за развития различных видов плазменной неустойчивости, прохождения ударных волн и распространения потоков быстрых частиц, рожденных солнечными вспышками.

Во всех процессах на Солнце - вспышках, появлении пятен и протуберанцев, рождении солнечных космических лучей магнитное поле играет важнейшую роль. Измерения, основанные на эффекте Зеемана, показали, что магнитное поле солнечных пятен достигает нескольких тысяч Гс, протуберанцы удерживаются полями ~ 10-100 Гс (при среднем значении общего магнитного поля Солнца ~ 1 Гс).

Магнитные бури

Магнитные бури — сильные возмущения магнитного поля Земли, резко нарушающие плавный суточный ход элементов земного магнетизма. Магнитные бури длятся от нескольких часов до нескольких суток и наблюдаются одновременно на всей Земле.

Как правило, магнитные бури состоят из предварительной, начальной и главной фаз, а также фазы восстановления. В предварительной фазе наблюдаются незначительные изменения геомагнитного поля (в основном в высоких широтах), а также возбуждение характерных короткопериодических колебаний поля. Начальная фаза характеризуется внезапным изменением отдельных составляющих поля на всей Земле, а главная - большими колебаниями поля и сильным уменьшением горизонтальной составляющей. В фазе восстановления магнитной бури поле возвращается к своему нормальному значению.



Влияние солнечного ветра
на магнитосферу Земли

Магнитные бури вызываются потоками солнечной плазмы из активных областей Солнца, накладывающимися на спокойный солнечный ветер. Поэтому магнитные бури чаще наблюдаются вблизи максимумов 11-летнего цикла солнечной активности. Достигая Земли, потоки солнечной плазмы увеличивают сжатие магнитосферы, вызывая начальную фазу магнитной бури, и частично проникают внутрь магнитосферы Земли. Попадание частиц высоких энергий в верхнюю атмосферу Земли и их воздействие на магнитосферу приводят к генерации и усилению в ней электрических токов, достигающих наибольшей интенсивности в полярных областях ионосферы, с чем связано наличие высокоширотной зоны магнитной активности. Изменения магнитосферно-ионосферных токовых систем проявляются на поверхности Земли в виде иррегулярных магнитных возмущений.

В явлениях микромира роль магнитного поля столь же существенна, как и в космических масштабах. Это объясняется существованием у всех частиц - структурных элементов вещества (электронов, протонов, нейтронов), магнитного момента, а также действием магнитного поля на движущиеся электрические заряды.

Применение магнитных полей в науке и технике. Магнитные поля обычно подразделяют на слабые (до 500 Гс), средние (500 Гс - 40 кГс), сильные (40 кГс - 1 МГс) и сверхсильные (свыше 1 МГс). На использовании слабых и средних магнитных полей основана практически вся электротехника, радиотехника и электроника. Слабые и средние магнитные поля получают при помощи постоянных магнитов, электромагнитов, неохлаждаемых соленоидов, сверхпроводящих магнитов.

Источники магнитного поля

Все источники магнитных полей можно разделить на искусственные и естественные. Основными естественными источниками магнитного поля являются собственное магнитное поле планеты Земля и солнечный ветер. К искусственным источникам можно отнести все электромагнитные поля, которыми так изобилует наш современный мир, и наши дома в частности. Более подробно об , и читайте на нашем .

Транспорт на электроприводе является мощным источником магнитного поля в диапазоне от 0 до 1000 Гц. Железнодорожный транспорт использует переменный ток. Городской транспорт - постоянный. Максимальные значения индукции магнитного поля в пригородном электротранспорте достигают 75 мкТл, средние значения - около 20 мкТл. Средние значения на транспорте с приводом от постоянного тока зафиксированы на уровне 29 мкТл. У трамваев, где обратный провод - рельсы, магнитные поля компенсируют друг друга на гораздо большем расстоянии, чем у проводов троллейбуса, а внутри троллейбуса колебания магнитного поля невелики даже при разгоне. Но самые большие колебания магнитного поля - в метро. При отправлении состава величина магнитного поля на платформе составляет 50-100 мкТл и больше, превышая геомагнитное поле. Даже когда поезд давно исчез в туннеле, магнитное поле не возвращается к прежнему значению. Лишь после того, как состав минует следующую точку подключения к контактному рельсу, магнитное поле вернется к старому значению. Правда, иногда не успевает: к платформе уже приближается следующий поезд и при его торможении магнитное поле снова меняется. В самом вагоне магнитное поле еще сильнее - 150-200 мкТл, то есть в десять раз больше, чем в обычной электричке.


Значения индукции магнитных полей, наиболее часто встречаемых нами в повседневной жизни приведены на диаграмме ниже. Глядя на эту диаграмму становится ясно, что мы подвергаемся воздействию магнитных полей постоянно и повсеместно. По мнению некоторых ученых, вредными считаются магнитные поля с индукцией свыше 0,2 мкТл. Ествественно, что следует предпринимать определенные меры предосторожности, чтобы обезопасить себя от пагубного воздействия окружающих нас полей. Просто выполняя несколько несложных правил Вы можете в значительной мере снизить воздействие магнитных полей на свой организм.

В действующих СанПиН 2.1.2.2801-10 «Изменения и дополнения №1 к СанПиН 2.1.2.2645-10 «Санитарно-эпидемиологические требования к условиям проживания в жилых зданиях и помещениях» сказано следующее: "Предельно допустимый уровень ослабления геомагнитного поля в помещениях жилых зданий устанавливается равным 1,5". Также установлены предельно допустимые значения интенсивности и напряжённости магнитного поля частотой 50 Гц:

  • в жилых помещениях — 5 мкТл или 4 А/м ;
  • в нежилых помещениях жилых зданий, на селитебной территории, в том числе на территории садовых участков — 10 мкТл или 8 А/м .

Исходя из указанных нормативов каждый может рассчитать какое количество электрических приборов может находиться во включённом состоянии и в состоянии ожидания в каждом конкретном помещении или же , на основании которого будут выданы рекомендации по нормализации жилого пространства.

Видеоматериалы по теме



Небольшой научный фильм о магнитном поле Земли


Использованная литература

1. Большая Советская Энциклопедия.

Уже давно магнитное поле вызывает множество вопросов у человека, но и сейчас остается малоизвестным явлением. Его характеристики и свойства пытались исследовать многие ученые, ведь польза и потенциал от применения поля были неоспоримыми фактами.

Давайте будем разбирать все по порядку. Итак, как действует и образуется любое магнитное поле? Правильно, от электрического тока. А ток, если верить учебникам по физике, – это имеющий направление поток заряженных частиц, не так ли? Так вот, когда ток проходит по любому проводнику, около него начинает действовать некая разновидность материи – магнитное поле. Магнитное поле может создаваться током заряженных частиц или магнитными моментами электронов в атомах. Теперь это поле и материя имеют энергию, ее мы видим в электромагнитных силах, которые могут влиять на ток и его заряды. Магнитное поле начинает воздействовать на поток заряженных частиц, и они меняют начальное направление движения перпендикулярно самому полю.

Еще магнитное поле можно назвать электродинамичным, ведь оно образуется около движущихся и воздействует только на движущиеся частицы. Ну а динамичным оно является из-за того, что имеет особое строение во вращающихся бионах на области пространства. Заставить их вращаться и двигаться может обыкновенный электрический движущийся заряд. Бионы передают любые возможные взаимодействия в этой области пространства. Поэтому движущийся заряд притягивает один полюс всех бионов и заставляет их вращаться. Только он может вывести их из состояния покоя, больше ничего, ведь другие силы не смогут влиять на них.

В электрическом поле находятся заряженные частицы, которые очень быстро двигаются и могут преодолеть 300 000 км всего за секунду. Такую же скорость имеет и свет. Магнитное поле не бывает без электрического заряда. Это значит, что частицы невероятно близко связаны друг с другом и существуют в общем электромагнитном поле. То есть, если будут любые изменения в магнитном поле, то изменения будут и в электрическом. Этот закон также обратен.

Мы тут много говорим про магнитное поле, но как же его можно представить? Мы не можем увидеть его нашим человеческим невооруженным глазом. Мало того, из-за невероятно быстрого распространения поля, мы не успеваем его зафиксировать при помощи различных устройств. Но чтобы что-то изучать, надо иметь хоть какое-нибудь представление о нем. Еще часто приходится изображать магнитное поле на схемах. Для того чтобы было проще понять его, проводят условные силовые линии поля. Откуда же их взяли? Их придумали неспроста.

Попробуем увидеть магнитное поле при помощи мелких металлических опилок и обыкновенного магнита. Насыплем на ровную поверхность эти опилки и введем их в действие магнитного поля. Затем увидим, что они будут двигаться, вращаться и выстраиваться в рисунок или схему. Полученное изображение будет показывать примерное действие сил в магнитном поле. Все силы и, соответственно, силовые линии непрерывны и замкнуты в этом месте.

Магнитная стрелка имеет сходные характеристики и свойства с компасом, и ее применяют, чтобы определить направление силовых линий. Если она попадет в зону действия магнитного поля, по ее северному полюсу мы видим направление действия сил. Тогда выделим отсюда несколько выводов: верх обычного постоянного магнита, из которого исходят силовые линии, обозначают северным полюсом магнита. Тогда как южным полюсом обозначают ту точку, где силы замыкаются. Ну а силовые линии внутри магнита на схеме не выделяются.

Магнитное поле, его свойства и характеристики имеют довольно большое применение, потому что во многих задачах его приходится учитывать и исследовать. Это важнейшее явление в науке физике. С ним неразрывно связаны более сложные вещи, такие как магнитная проницаемость и индукция. Чтобы разъяснить все причины появления магнитного поля, надо опираться на реальные научные факты и подтверждения. Иначе в более сложных задачах неправильный подход может нарушить целостность теории.

А сейчас приведем примеры. Все мы знаем нашу планету. Вы скажете, что она не имеет магнитного поля? Может, вы и правы, но ученые говорят, что процессы и взаимодействия внутри ядра Земли рождают огромное магнитное поле, которое тянется на тысячи километров. Но в любом магнитном поле должны быть его полюса. И они существуют, просто расположены немного в стороне от географического полюса. Как же мы его чувствуем? Например, у птиц развиты способности навигации, и они ориентируются, в частности, по магнитному полю. Так, при его помощи гуси благополучно прибывают в Лапландию. Специальные навигационные устройства также используют это явление.

Магнитное поле и его характеристики

План лекции:

    Магнитное поле, его свойства и характеристики.

Магнитное поле - форма существования материи, окружающей движущиеся электрические заряды (проводники с током, постоянные магниты).

Это название обусловлено тем, что, как обнаружил в 1820 году датский физик Ханс Эрстед, оно оказывает ориентирующее действие на магнитную стрелку. Опыт Эрстеда: под проволокой с током помещалась магнитная стрелка, вращающаяся на игле. При включении тока она устанавливалась перпендикулярно проволоке; при изменении направления тока поворачивалась в противоположную сторону.

Основные свойства магнитного поля:

    порождается движущимися электрическими зарядами, проводниками с током, постоянными магнитами и переменным электрическим полем;

    действует с силой на движущиеся электрические заряды, проводники с током, намагниченные тела;

    переменное магнитное поле порождает переменное электрическое поле.

Из опыта Эрстеда следует, что магнитное поле имеет направленный характер и должно иметь векторную силовую характеристику. Ее обозначают и называют магнитной индукцией.

Магнитное поле изображается графически с помощью магнитных силовых линий или линий магнитной индукции. Магнитными силовыми линиями называются линии, вдоль которых в магнитном поле располагаются железные опилки или оси маленьких магнитных стрелок. В каждой точке такой линии вектор направлен по касательной.

Линии магнитной индукции всегда замкнуты, что говорит об отсутствии в природе магнитных зарядов и вихревом характере магнитного поля.

Условно они выходят из северного полюса магнита и входят в южный. Густота линий выбирается так, чтобы число линий через единицу площади, перпендикулярную магнитному полю, было пропорционально величине магнитной индукции.

Н

Магнитное соленоида с током

Аправление линий определяется правилом правого винта. Соленоид - катушка с током, витки которой расположены вплотную друг к другу, а диаметр витка много меньше длины катушки.

Магнитное поле внутри соленоида является однородным. Магнитное поле называется однородным, если вектор в любой точке постоянен.

Магнитное поле соленоида аналогично магнитному полю полосового магнита.

С

оленоид с током представляет собой электромагнит.

Опыт показывает, что для магнитного поля, как и для электрического, справедлив принцип суперпозиции : индукция магнитного поля, создаваемого несколькими токами или движущимися зарядами, равна векторной сумме индукций магнитных полей, создаваемых каждым током или зарядом:

Вектор вводится одним из 3-х способов:

а) из закона Ампера;

б) по действию магнитного поля на рамку с током;

в) из выражения для силы Лоренца.

Ампер экспериментально установил, что сила с которой магнитное поле действует на элемент проводника с током I, находящегося в магнитном поле, прямо пропорциональна силе

тока I и векторному произведению элемента длины на магнитную индукцию :

- закон Ампера

Н
аправление вектора может быть найдено согласно общим правилам векторного произведения, откуда следует правило левой руки: если ладонь левой руки расположить так, чтобы магнитные силовые линии входили в нее, а 4 вытянутых пальца направить по току, то отогнутый большой палец покажет направление силы.

Сила, действующая на провод конечной длины, найдется интегрированием по всей длине.

При I = const, B=const, F = BIlsin

Если  =90 0 , F = BIl

Индукция магнитного поля - векторная физическая величина, численно равная силе, действующей в однородном магнитном поле на проводник единичной длины с единичной силой тока, расположенный перпендикулярно магнитным силовым линиям.

1Тл - индукция однородного магнитного поля, в котором на проводник длиной 1м с током в 1А, расположенный перпендикулярно магнитным силовым линиям, действует сила 1Н.

До сих пор мы рассматривали макротоки, текущие в проводниках. Однако, согласно предположению Ампера, в любом теле существуют микроскопические токи, обусловленные движением электронов в атомах. Эти микроскопические молекулярные токи создают свое магнитное поле и могут поворачиваться в полях макротоков, создавая в теле дополнительное магнитное поле. Вектор характеризует результирующее магнитное поле, создаваемое всеми макро- и микротоками, т.е. при одном и том же макротоке вектор в различных средах имеет разные значения.

Магнитное поле макротоков описывается вектором магнитной напряженности .

Для однородной изотропной среды

,

 0 = 410 -7 Гн/м - магнитная постоянная,  0 = 410 -7 Н/А 2 ,

 - магнитная проницаемость среды, показывающая, во сколько раз магнитное поле макротоков изменяется за счет поля микротоков среды.

    Магнитный поток. Теорема Гаусса для магнитного потока.

Потоком вектора (магнитным потоком) через площадку dS называется скалярная величина, равная

где - проекция на направление нормали к площадке;

 - угол между векторами и .

Направленный элемент поверхности,

Поток вектора - алгебраическая величина,

если - при выходе из поверхности;

если - при входе в поверхность.

Поток вектора магнитной индукции через произвольную поверхность S равен

Для однородного магнитного поля =const,


1 Вб - магнитный поток, проходящий через плоскую поверхность площадью 1 м 2 , расположенную перпендикулярно однородному магнитному полю, индукция которого равна 1 Тл.

Магнитный поток через поверхность S численно равен количеству магнитных силовых линий, пересекающих данную поверхность.

Поскольку линии магнитной индукции всегда замкнуты, для замкнутой поверхности число линий, входящих в поверхность (Ф 0), следовательно, полный поток магнитной индукции через замкнутую поверхность равен нулю.

- теорема Гаусса : поток вектора магнитной индукции через любую замкнутую поверхность равен нулю.

Эта теорема является математическим выражением того, что в природе отсутствуют магнитные заряды, на которых начинались бы или заканчивались линии магнитной индукции.

    Закон Био-Савара-Лапласа и его применение для расчета магнитных полей.

Магнитное поле постоянных токов различной формы было подробно исследовано фр. учеными Био и Саваром. Ими было установлено, что во всех случаях магнитная индукция в произвольной точке пропорциональна силе тока, зависит от формы, размеров проводника, расположения этой точки по отношению к проводнику и от среды.

Результаты этих опытов были обобщены фр. математиком Лапласом, который учел векторный характер магнитной индукции и высказал гипотезу о том, что индукция в каждой точке представляет собой, согласно принципу суперпозиции, векторную сумму индукций элементарных магнитных полей, создаваемых каждым участком этого проводника.

Лапласом в 1820 г. был сформулирован закон, который получил название закона Био-Савара-Лапласа: каждый элемент проводника с током создает магнитное поле, вектор индукции которого в некоторой произвольной точке К определяется по формуле:

- закон Био-Савара-Лапласа.

Из закона Био-Совара-Лапласа следует, что направление вектора совпадает с направлением векторного произведения . Такое же направление дает и правило правого винта (буравчика).

Учитывая, что ,

Элемент проводника, сонаправленный с током;

Радиус-вектор, соединяющий c точкой K;

Закон Био-Савара-Лапласа имеет практическое значение, т.к. позволяет найти в заданной точке пространства индукцию магнитного поля тока, текущего по проводнику конечный размеров и произвольной формы.

Для тока произвольной формы подобный расчет представляет собой сложную математическую задачу. Однако, если распределение тока имеет определенную симметрию, то применение принципа суперпозиции совместно с законом Био-Савара-Лапласа дает возможность относительно просто рассчитать конкретные магнитные поля.

Рассмотрим некоторые примеры.

А. Магнитное поле прямолинейного проводника с током.

    для проводника конечной длины:


    для проводника бесконечной длины:  1 = 0,  2 = 

Б. Магнитное поле в центре кругового тока:

=90 0 , sin=1,

Эрстедом в 1820 году экспериментально было обнаружено, что циркуляция по замкнутому контуру, окружающему систему макротоков, пропорциональна алгебраической сумме этих токов. Коэффициент пропорциональности зависит от выбора системы единиц и в СИ равен 1.

Ц
иркуляцией вектора называется интеграл по замкнутому контуру.

Эта формула носит название теоремы о циркуляции или закона полного тока :

циркуляция вектора напряженности магнитного поля по произвольному замкнутому контуру равна алгебраической сумме макротоков (или полному току), охватываемых этим контуром. его характеристики В пространстве, окружающем токи и постоянные магниты, возникает силовое поле , называемое магнитным . Наличие магнитного поля обнаруживается...

  • О реальной структуре электромагнитного поля и его характеристиках распространения в виде плоских волн.

    Статья >> Физика

    О РЕАЛЬНОЙ СТРУКТУРЕ ЭЛЕКТРОМАГНИТНОГО ПОЛЯ И ЕГО ХАРАКТЕРИСТИКАХ РАСПРОСТРАНЕНИЯ В ВИДЕ ПЛОСКИХ ВОЛН... другие составляющие единого поля : электромагнитное поле с векторными компонентами и, электрическое поле с компонентами и, магнитное поле с компонентами...

  • Магнитное поле , цепи и индукция

    Реферат >> Физика

    ... поля ). Основной характеристикой магнитного поля является его сила, определяемая вектором магнитной индукции (вектор индукции магнитного поля ). В СИ магнитная ... , обладающими магнитным моментом. Магнитное поле и его параметры Направление магнитных линий и...

  • Магнитное поле (2)

    Реферат >> Физика

    Участок проводника АВ с током в магнитное поле перпендикулярно его магнитным линями. При показанном на рисунке... величина зависит только от магнитного поля и может служить его количественной характеристикой . Эта величина принимается...

  • Магнитные материалы (2)

    Реферат >> Экономика

    Материалы, вступающие во взаимодействие с магнитным полем , выражающееся в его изменении, а также в других... и после прекращения воздействия магнитного поля .1. Основные характеристики магнитных материаловМагнитные свойства материалов характеризуется...

  • Магнитное поле и его характеристики. При прохождении электрического тока по проводнику вокруг него образуется магнитное поле . Магнитное поле представляет собой один из видов материи. Оно обладает энергией, которая проявляет себя в виде электромагнитных сил, действующих на отдельные движущиеся электрические заряды (электроны и ионы) и на их потоки, т. е. электрический ток. Под влиянием электромагнитных сил движущиеся заряженные частицы отклоняются от своего первоначального пути в направлении, перпендикулярном полю (рис. 34). Магнитное поле образуется только вокруг движущихся электрических зарядов, и его действие распространяется тоже лишь на движущиеся заряды. Магнитное и электрические поля неразрывны и образуют совместно единое электромагнитное поле . Всякое изменение электрического поля приводит к появлению магнитного поля и, наоборот, всякое изменение магнитного поля сопровождается возникновением электрического поля. Электромагнитное поле распространяется со скоростью света, т. е. 300 000 км/с.

    Графическое изображение магнитного поля. Графически магнитное поле изображают магнитными силовыми линиями, которые проводят так, чтобы направление силовой линии в каждой точке поля совпадало с направлением сил поля; магнитные силовые линии всегда являются непрерывными и замкнутыми. Направление магнитного поля в каждой точке может быть определено при помощи магнитной стрелки. Северный полюс стрелки всегда устанавливается в направлении действия сил поля. Конец постоянного магнита, из которого выходят силовые линии (рис. 35, а), принято считать северным полюсом, а противоположный конец, в который входят силовые линии,- южным полюсом (силовые линии, проходящие внутри магнита, не показаны). Распределение силовых линий между полюсами плоского магнита можно обнаружить при помощи стальных опилок, насыпанных на лист бумаги, положенный на полюсы (рис. 35, б). Для магнитного поля в воздушном зазоре между двумя параллельно расположенными разноименными полюсами постоянного магнита характерно равномерное распределение силовых магнитных линий (рис. 36) (силовые линии, проходящие внутри магнита, не показаны).

    Рис. 37. Магнитный поток, пронизывающий катушку при перпендикулярном (а) и наклонном (б) ее положениях по отношению к направлению магнитных силовых линий.

    Для более наглядного изображения магнитного поля силовые линии располагают реже или гуще. В тех местах, где магнитное роле сильнее, силовые линии располагают ближе друг к другу, там же, где оно слабее,- дальше друг от друга. Силовые линии нигде не пересекаются.

    Во многих случаях удобно рассматривать магнитные силовые линии как некоторые упругие растянутые нити, которые стремятся сократиться, а также взаимно отталкиваются друг от друга (имеют взаимный боковой распор). Такое механическое представление о силовых линиях позволяет наглядно объяснить возникновение электромагнитных сил при взаимодействии магнитного поля и Проводника с током, а также двух магнитных полей.

    Основными характеристиками магнитного поля являются магнитная индукция, магнитный поток, магнитная проницаемость и напряженность магнитного поля.

    Магнитная индукция и магнитный поток. Интенсивность магнитного поля, т. е.способность его производить работу, определяется величиной, называемой магнитной индукцией. Чем сильнее магнитноe поле, созданное постоянным магнитом или электромагнитом, тем большую индукцию оно имеет. Магнитную индукцию В можно характеризовать плотностью силовых магнитных линий, т. е. числом силовых линий, проходящих через площадь 1 м 2 или 1 см 2 , расположенную перпендикулярно магнитному полю. Различают однородные и неоднородные магнитные поля. В однородном магнитном поле магнитная индукция в каждой точке поля имеет одинаковое значение и направление. Однородным может считаться поле в воздушном зазоре между разноименными полюсами магнита или электромагнита (см.рис.36) при некотором удалении от его краев. Магнитный поток Ф, проходящий через какую-либо поверхность, определяется общим числом магнитных силовых линий, пронизывающих эту поверхность, например катушку 1 (рис. 37, а), следовательно, в однородном магнитном поле

    Ф = BS (40)

    где S - площадь поперечного сечения поверхности, через которую проходят магнитные силовые линии. Отсюда следует, что в таком поле магнитная индукция равна потоку, поделенному на площадь S поперечного сечения:

    B = Ф /S (41)

    Если какая-либо поверхность расположена наклонно по отношению к направлению магнитных силовых линий (рис. 37, б), то пронизывающий ее поток будет меньше, чем при перпендикулярном ее положении, т. е. Ф 2 будет меньше Ф 1 .

    В системе единиц СИ магнитный поток измеряется в веберах (Вб), эта единица имеет размерность В*с (вольт-секунда). Магнитная индукция в системе единиц СИ измеряется в теслах (Тл); 1 Тл = 1 Вб/м 2 .

    Магнитная проницаемость. Магнитная индукция зависит не только от силы тока, проходящего по прямолинейному проводнику или катушке, но и от свойств среды, в которой создается магнитное поле. Величиной, характеризующей магнитные свойства среды, служит абсолютная магнитная проницаемость? а. Единицей ее измерения является генри на метр (1 Гн/м = 1 Ом*с/м).
    В среде с большей магнитной проницаемостью электрический ток определенной силы создает магнитное поле с большей индукцией. Установлено, что магнитная проницаемость воздуха и всех веществ, за исключением ферромагнитных материалов (см. § 18), имеет примерно то же значение, – что и магнитная проницаемость вакуума. Абсолютную магнитную проницаемость вакуума называют магнитной постоянной, ? о = 4?*10 -7 Гн/м. Магнитная проницаемость ферромагнитных материалов в тысячи и даже десятки тысяч раз больше магнитной проницаемости неферромагнитных веществ. Отношение магнитной проницаемости? а какого-либо вещества к магнитной проницаемости вакуума? о называют относительной магнитной проницаемостью:

    ? = ? а /? о (42)

    Напряженность магнитного поля. Напряженность И не зависит от магнитных свойств среды, но учитывает влияние силы тока и формы проводников на интенсивность магнитного поля в данной точке пространства. Магнитная индукция и напряженность связаны отношением

    H = B/? а = B/(?? о) (43)

    Следовательно, в среде с неизменной магнитной проницаемостью индукция магнитного поля пропорциональна его напряженности.
    Напряженность магнитного поля измеряется в амперах на метр (А/м) или амперах на сантиметр (А/см).

    Магнитное поле Земли - это образование, порождаемое источниками внутри планеты. Оно является объектом исследования соответствующего раздела геофизики. Далее рассмотрим подробнее, что собой представляет магнитное поле Земли, как оно образуется.

    Общая информация

    Недалеко от поверхности Земли, примерно на расстоянии трёх её радиусов, силовые линии от магнитного поля располагаются по системе "двух полярных зарядов". Здесь располагается область, называемая "плазменной сферой". С удалением от поверхности планеты нарастает влияние потока ионизированных частиц из солнечной короны. Это ведёт к сжатию магнитосферы со стороны Солнца, и напротив, магнитное поле Земли вытягивается с обратной, теневой стороны.

    Плазменная сфера

    Ощутимое воздействие на поверхностное магнитное поле Земли оказывает направленное движение заряженных частиц в верхних слоях атмосферы (ионосферы). Месторасположение последней - от ста километров и выше от поверхности планеты. Магнитное поле Земли удерживает плазмосферу. Однако её структура сильно зависит от активности солнечного ветра и взаимодействия его с удерживающим слоем. И частота магнитных бурь на нашей планете обусловлена вспышками на Солнце.

    Терминология

    Существует понятие "магнитная ось Земли". Это прямая, которая проходит через соответствующие полюсы планеты. "Магнитным экватором" называется большая окружность плоскости, перпендикулярная этой оси. Вектор на ней имеет приближенное к горизонтальному направление. Усреднённая напряжённость магнитного поля Земли значительно зависима от географического положения. Приблизительно она равна 0,5 Э, то есть 40 А/м. На магнитном экваторе этот же показатель равен примерно 0,34 Э, а вблизи полюсов он близок к 0,66 Э. В некоторых аномалиях планеты, например, в пределах Курской аномалии, показатель увеличен и составляет 2 Э. Силовые линии магнитосферы Земли со сложным строением, спроецированные на её поверхность и сходящиеся на её же полюсах, носят название "магнитных меридианов".

    Природа возникновения. Предположения и догадки

    Не так давно получило право на существование предположение о связи возникновения магнитосферы Земли с течением тока в жидкометаллическом ядре, находящемся на расстоянии четверти-трети радиуса нашей планеты. У учёных есть предположение и о так называемых "теллурических токах", протекающих вблизи земной коры. Следует сказать, что с течением времени происходит трансформация формирования. Магнитное поле Земли неоднократно изменялось в последние сто восемьдесят лет. Это зафиксировано в океанической коре, и об этом свидетельствуют исследования остаточной намагниченности. Путём сопоставления участков по обе стороны хребтов океана определяют время расхождения этих участков.

    Сдвиг магнитных полюсов Земли

    Местоположение этих участков планеты непостоянно. Регистрируется факт их смещений уже с конца девятнадцатого века. В Южном полушарии магнитный полюс сместился за это время на 900 км и оказался в акватории Индийского океана. В Северной части происходят аналогичные процессы. Здесь полюс смещается по направлению к магнитной аномалии в Восточной Сибири. С 1973 по 1994 годы расстояние, на которое сдвинулся здесь участок, составило 270 км. Эти предварительно рассчитанные данные подтвердились позже замерами. По последним данным, скорость движения магнитного полюса Северного полушария значительно увеличилась. Она выросла с 10 км/год в семидесятых годах прошлого века до 60 км/год в начале нынешнего. При этом напряжённость у земного магнитного поля неравномерно уменьшается. Так, за последние 22 года она в отдельных местах снизилась на 1.7%, а где-то на 10%, хотя есть и участки, где она, напротив, возросла. Ускорение в смещении магнитных полюсов (приблизительно на 3 км в год) даёт повод предположить, что наблюдаемое сегодня их перемещение не есть экскурс, это очередная инверсия.

    Это косвенно подтверждается и увеличением так называемых "полярных щелей" на юге и севере магнитосферы. В образовавшиеся расширения стремительно проникает ионизированный материал солнечной короны и космоса. От этого в приполярных областях Земли собирается всё большее количество энергии, что само по себе чревато дополнительным разогревом полярных ледяных шапок.

    Координаты

    В науке, изучающей космические лучи, используют координаты геомагнитного поля, названные в честь учёного Мак-Илвайна. Он первым предложил использовать их, поскольку они основаны на изменённых вариантах активности заряженных элементов в магнитном поле. Для точки используются две координаты (L, B). Они характеризуют магнитную оболочку (параметр Мак-Илвайна) и индукцию поля L. Последний - параметр, равный соотношению среднего удаления сферы от центра планеты к его радиусу.

    "Магнитное наклонение"

    Несколько тысячелетий назад китайцы сделали удивительное открытие. Они выяснили, что намагниченные предметы способны располагаться в определённом направлении. А в середине шестнадцатого века Георг Картманн - немецкий учёный - сделал очередное открытие в этой области. Так появилось понятие "магнитное наклонение". Под этим названием подразумевается угол отклонения стрелки вверх либо вниз от горизонтальной плоскости под влиянием магнитосферы планеты.

    Из истории исследований

    В области северного магнитного экватора, отличного от географического, северный конец отходит вниз, а в южном, наоборот, - вверх. В 1600 году английским врачом Уильямом Гильбертом впервые были сделаны предположения о наличии магнитного поля Земли, вызывающего определённое поведение предметов, предварительно намагниченных. В своей книге он описал опыт с шаром, снабжённым железной стрелкой. В результате исследований он пришёл к выводу о том, что Земля представляет собой большой магнит. Эксперименты проводил и английский астроном Генри Геллибрант. В результате своих наблюдений он пришёл к выводу о том, что магнитное поле Земли подвержено медленным изменениям.

    Хосе де Акоста описал возможность использования компаса. Он также установил, чем отличаются Магнитный и Северный полюсы, а в его знаменитой Истории (1590) была обоснована теория о линиях без магнитного отклонения. Значительный вклад в изучение рассматриваемого вопроса внес и Христофор Колумб. Ему принадлежит открытие непостоянства магнитного склонения. Трансформации поставлены в зависимость от изменения географических координат. Магнитное склонение - это угол отклонения стрелки от направления Север-Юг. В связи с открытием Колумба активизировалось исследование. Сведения о том, что собой представляет магнитное поле Земли, крайне необходимы были мореплавателям. Работал над этой проблемой и М. В. Ломоносов. Он для изучения земного магнетизма рекомендовал вести системные наблюдения, используя для этого постоянные пункты (подобие обсерваторий). Также очень важно было, по мнению Ломоносова, это осуществлять и на море. Эта мысль великого учёного была реализована в России спустя шестьдесят лет. Открытие Магнитного полюса на Канадском архипелаге принадлежит полярному исследователю англичанину Джону Россу (1831 год). А в 1841 он же открыл другой полюс планеты, но уже в Антарктиде. Гипотезу о происхождении магнитного поля Земли выдвинул Карл Гаусс. Вскоре он же доказал, что большая часть его питается из источника внутри планеты, но причина его незначительных отклонений находится во внешней среде.

    Загрузка...
    Top