Какая прямая называется перпендикулярной к плоскости. Перпендикулярность прямой и плоскости определение прямая называется перпендикулярной к плоскости, если она перпендикулярна к любой прямой, лежащей в этой

Прямая перпендикулярна плоскости, если она перпендикулярна двум пересекающимся прямым, лежащим в этой плоскости (рис. 6.3).

Если прямая перпендикулярна плоскости, то она будет перпендикулярна любой прямой, лежащей в этой плоскости. Из множества этих прямых при построении перпендикуляров к плоскости выбирают горизонталь и фронталь плоскости. В этом случае, пользуясь свойством проецирования прямого угла на комплексном чертеже, фронтальную проекцию перпендикуляра проводим под углом 90 0 к фронтальной проекции фронтали, а горизонтальную проекцию перпендикуляра – под углом 90° к горизонтальной проекции горизонтали.

Рассмотрим алгоритм построения перпендикуляра n к плоскости Р(D АВС) (табл. 6.6).

Таблица 6.6

Алгоритм построения перпендикуляра к плоскости

2. Строим фронталь в плоскости Р(D АВС) – f (f 1 f 2)

3. Строим перпендикуляр n к плоскости Р(D АВС). Для этого через точку D 2 проводим n 2 , перпендикулярно f 2 , а через D 1 проводим n 1 , перпендикулярно h 1 .

n (n 1 n 2) ^Р (DАВС), так как

n 1 ^h 1 ; h 1 P 1 (DА 1 В 1 С 1)

n 2 ^f 2 ; f 2 P 2 (DА 2 В 2 С 2)

§ 6. Перпендикулярность двух плоскостей

Две плоскости будут перпендикулярны друг к другу, если одна из них проходит через прямую, перпендикулярную другой плоскости (рис. 6.4).

АВ b , то есть АВ принадлежит плоскости b и АВ ^ плоскости a . Плоскость b ^ плоскости a .

Рассмотрим это положение на комплексном чертеже (табл. 6.7), где будет показано построение плоскости Р, проходящей через прямую l и перпендикулярной плоскости, заданной треугольником Q(D АВС) (табл. 6.7).

Таблица 6.7

Алгоритм построения плоскости, перпендикулярной данной

Вербальная форма

Графическая форма

1. Известно, что для построения прямой, перпендикулярной плоскости, необходимо построить горизонталь и фронталь в плоскости.

а) Заметим, что построение перпендикуляра упрощается, так как стороны плоскости Q(D АВС) являются прямыми уровня:

АВ (А 1 В 1 ; А 2 В 2) – фронталь

АС (А 1 С 1 ; А 2 С 2) – горизонталь.

б) Возьмем на прямой l произвольную точку К

2. Через точку К, которая принадлежит прямой l, проводим прямую n ^ Q, т.е.

n 1 ^ A 1 C 1 и n 2 ^ A 2 В 2 .

Искомая плоскость будет определяться двумя пересекающимися прямыми, одна из которых задана – l , а другая – n является перпендикулярной к заданной плоскости:

P(l n)^ Q (D ABC)

Выводы

а) не иметь общих точек;

б) иметь хотя бы одну общую точку;

в) иметь множество общих точек.

В зависимости от этого прямая может принадлежать плоскости, быть ей параллельна, пересекаться с данной плоскостью и, как частный случай, быть ей перпендикулярна.

2. Две плоскости в пространстве могут быть параллельны друг другу, пересекаться между собой и, как частный случай, быть взаимно перпендикулярны.

3. Две пересекающиеся плоскости имеют одну общую прямую – линию пересечения.

5. Для построения перпендикуляра к плоскости необходимо использовать свойства проецирования прямого угла.

В планиметрии построение перпендикуляра основано на том, что он соединяет данную точку и точку, симметричную с ней относительно рассматриваемой прямой. Если мы хотим составить понятие о перпендикуляре к плоскости, то можно взять любую точку, лежащую вне этой плоскости, отразить эту точку в данной плоскости, как в зеркале, и соединить данную точку с ее отражением; тогда получим перпендикуляр к плоскости. Следует, однако, заметить, что в случае отражения относительно прямой все дело сводилось к сгибу плоскости вдоль данной прямой, т. е. к движению, хотя и производимому в пространстве. Отражение же в плоскости уже не сводится к движению. Поэтому изложение вопроса о перпендикуляре к плоскости сложнее соответствующего изложения вопроса о перпендикуляре к прямой в планиметрии, оно опирается на следующее известное читателю

Определение. Прямая называется перпендикуляром к плоскости, если она перпендикулярна к любой прямой, лежащей в этой плоскости.

Так как угол между двумя скрещивающимися прямыми равен по определению углу между пересекающимися прямыми, параллельными данным, то прямая а (рис. 337), перпендикулярная ко всем прямым плоскости К, проходящим через точку пересечения прямой а с плоскостью К, будет перпендикулярна и к плоскости К. Действительно, она образует прямой угол с любой прямой в плоскости так как она перпендикулярна к прямой b, проведенной в этой плоскости через точку параллельно b.

В действительности имеет место гораздо более простой Признак перпендикулярности прямой и плоскости. Прямая, перпендикулярная к двум пересекающимся прямым плоскости, перпендикулярна к этой плоскости.

Доказательство. Пусть на рис. 338 прямая а перпендикулярна к двум пересекающимся прямым , лежащим в плоскости Х. В силу сделанного выше замечания мы можем, не нарушая общности, предположить, что прямая а проходит через точку пересечения прямых тип. Требуется доказать, что прямая а перпендикулярна и к любой прямой плоскости в силу того же замечания можно предположить, что прямая проходит через точку . Сделаем следующие вспомогательные построения: на прямой а возьмем произвольную точку М и точку М на продолжении по другую сторону плоскости Я на расстоянии от точки Три прямые в плоскости X пересечем какой-либо прямой с, не проходящей через точки пересечения обозначим соответственно Р, Q, R. Соединим точки М и М с точками Р, Q, R. Треугольники равны, так как они прямоугольные, катеты равны по построению, а катет общий; значит, равны и их гипотенузы: (можно еще проще заметить, что МР - МР, как наклонные с равными проекциями). Отрезки MQ, MQ также равны. Значит, равны треугольники MPQ и MPQ (по трем сторонам). Отсюда заключаем, что равны треугольники MQR и у них между равными сторонами MQ и MQ и общей стороной QR заключены равные углы: (соответственные углы в равных треугольниках). Теперь уже видно, что равны и треугольники трем сторонам). Таким образом, углы MMUR и равны, и так как они смежные, то каждый из них прямой. Утверждение доказано.

К любой прямой можно провести перпендикулярную плоскость.

В самом деле, возьмем произвольную прямую и в любой ее точке проведем к ней два каких-либо перпендикуляра (лежащие в каких-либо двух плоскостях, проведенных через эту прямую). Через них, как через две пересекающиеся прямые, проходит плоскость. По предыдущему, данная прямая служит перпендикуляром к этой плоскости.

Из проведенных рассуждений также следует вывод: все прямые, перпендикулярные к данной прямой в одной из ее точек, лежат в одной плоскости, перпендикулярной к этой прямой.

В любой точке плоскости также можно восставить перпендикуляр к ней.

Для этого достаточно провести через данную в плоскости точку две прямые, лежащие в этой плоскости, а затем построить в той же точке две плоскости, перпендикулярные к проведенным прямым. Имея общую точку, эти две плоскости пересекутся по прямой, которая будет одновременно перпендикулярна к двум пересекающимся прямым в плоскости и, следовательно, перпендикулярна к самой плоскости.

Построение взаимно перпендикулярных прямых и плоскостей является важной графической операцией при решении метрических задач.

Построение перпендикуляра к прямой или плоскости основывается на свойстве прямого угла, которое формулируется следующим образом: если одна из сторон прямого угла параллельна плоскости проекций, а другая не перпендикулярна ей, то угол проецируется в натуральную величину на эту плоскость.

Рисунок 28

Сторона ВС прямого угла АВС, изображенного на рисунке 28, параллельна плоскости П 1 . Следовательно, проекция угла АВС на эту плоскость будет представлять прямой угол А 1 В 1 С 1 =90.

Прямая перпендикулярна плоскости, если она перпендикулярна двум пересекающимся прямым, лежащим в этой плоскости. При построении перпендикуляра из множества прямых принадлежащих плоскости, выбирают прямые уровня - горизонталь и фронталь. В этом случае горизонтальную проекцию перпендикуляра проводят перпендикулярно горизонтали, а фронтальную -перпендикулярно фронтали. На примере, изображенном на рисунке 29, показано построение перпендикуляра к плоскости, заданной треугольником АВС, из точки К. Для этого сначала проводим горизонталь и фронталь в плоскости. Затем из фронтальной проекции точки К проводим перпендикуляр к фронтальной проекции фронтали, а из горизонтальной проекции точки - перпендикуляр к горизонтальной проекции горизонтали. Затем строим точку пересечения данного перпендикуляра с плоскостью при помощи вспомогательной секущей плоскости Σ. Искомая точка - F. Таким образом, полученный отрезок КF является перпендикуляром к плоскости АВС.


Рисунок 29

На рисунке 29 изображено построение перпендикуляра КF к плоскости АВС.

Две плоскости перпендикулярны, если прямая, лежащая в одной плоскости, перпендикулярна двум пересекающимся прямым другой плоскости. Построение плоскости перпендикулярной данной плоскости АВС показано на рисунке 30. Через точку М проводится прямая МN, перпендикулярная плоскости АВС. Горизонтальная проекция этой прямой перпендикулярна АС, так как АС является горизонталью, а фронтальная проекция перпендикулярна АВ, так как АВ - фронталь. Затем через точку М проводится произвольная прямая EF. Таким образом, плоскость перпендикулярна АВС и задана двумя пересекающимися прямыми EF и MN.


Рисунок 30

Этот способ применяется для определения натуральных величин отрезков общего положения, а также углов наклона их к плоскостям проекций. Для того, чтобы определить натуральную величину отрезка этим способом, необходимо достроить прямоугольный треугольник к одной из проекций отрезка. Другим катетом будет являться разность высот или глубин конечных точек отрезка, а гипотенуза - натуральной величиной.

Рассмотрим пример: на рисунке 31 дан отрезок АВ общего положения. Требуется определить его натуральную величину и углы его наклона к фронтальной и горизонтальной плоскостям проекций.

Проводим перпендикуляр к одному из концов отрезка на горизонтальной плоскости. Откладываем на нем разность высот (ZA-ZB) концов отрезка и достраиваем прямоугольный треугольник. Гипотенуза его является натуральной величиной отрезка, а угол между натуральной величиной и проекцией отрезка - натуральной величиной угла наклона отрезка к плоскости П 1 . Порядок построений на фронтальной плоскости тот же самый. По перпендикуляру откладываем разность глубин концов отрезка (YA-YB). Полученный угол между натуральной величиной отрезка и его фронтальной проекцией - это угол наклона отрезка к плоскости П 2 .


Рисунок 31

1. Сформулируйте теорему о свойстве прямого угла.

2. В каком случае прямая перпендикулярна плоскости?

3. Сколько прямых и сколько плоскостей, перпендикулярных данной плоскости, можно провести через точку пространства?

4. Для чего применяется способ прямоугольного треугольника?

5. Как при помощи этого способа определить угол наклона отрезка общего положения к горизонтальной плоскости проекций?

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.






Связь между параллельностью прямых и их перпендикулярностью к плоскости Если одна из двух параллельных прямых перпендикулярна к плоскости, то и другая прямая перпендикулярна к этой плоскости. Если две прямые перпендикулярны к плоскости, то они параллельны.


ПЕРПЕНДИКУЛЯР И НАКЛОННЫЕ Отрезок АН называется перпендикуляром, проведенным из точки А к плоскости. Точка Н – основание перпендикуляра. Отрезок АМ называется наклонной, проведенной из точки А к плоскости. Точка М – основание наклонной. Отрезок НМ называется проекцией наклонной АМ на плоскость.


Расстояние от точки до плоскости 1.Построим плоскость, проходящую через точку W перпендикулярно какой – нибудь прямой m 1, лежащей в плоскости. 2.Найдем прямую m 2 - линию пересечения плоскостей и. 3.На прямой m 2 выберем какие – нибудь точки U 1 и U 2. 4.Длина высоты WH треугольника WU 1 U 2 - искомое расстояние от точки W до плоскости.


Расстояние между скрещивающимися прямыми 1.На одной из двух заданных прямых p и q, например на прямой q, выберем некоторую точку Т. Построим плоскость через прямую р и точку Т. 2.В плоскости через точку Т проведем прямую р 1 p. 3.Построим плоскость через пересекающиеся прямые р 1 и q. 4.Выберем на прямой р точку W и найдем расстояние WH от точки W до плоскости. WH – искомое расстояние. SV – общий перпендикуляр скрещивающихся прямых p и q.


Теорема о трех перпендикулярах Прямая, проведенная в плоскости через основание наклонной перпендикулярно к её проекции на эту плоскость, перпендикулярна и к самой наклонной. Обратная теорема: Прямая, проведенная в плоскости через основание наклонной перпендикулярно к ней, перпендикулярна и к её проекции на эту плоскость




ПЕРПЕНДИКУЛЯРНОСТЬ ПЛОСКОСТЕЙ Фигуру, образованную двумя полуплоскостями, не принадлежащими одной плоскости, с общей ограничивающей их прямой называют двугранным углом. Полуплоскости, образующие двугранный угол, называются его гранями. Общая граница полуплоскостей называется ребром двугранного угла.


Угол, который получается в сечении двугранного угла плоскостью, перпендикулярной его ребру, называют линейным углом двугранного угла. На рисунке а) – угол АОВ- линейный угол двугранного угла АСDB. Все линейные углы двугранного угла равны друг другу (рис.б).










Перпендикулярность в пространстве. ЛИТЕРАТУРА. 1.Геометрия Учебник для общеобразовательных учреждений / Л.С. Атанасян, В.Ф. Бутузов, С.Б.Кадомцев и др. – М. : Просвещение, Решение типовых задач по геометрии. Книга для учителя / В.Н. Литвиненко - М. : Просвещение, Изучение геометрии в классах. Методические рекомендации / С.М. Саакян, В.Ф. Бутузов – М. : Просвещение,



Загрузка...
Top