Экраны электронно-лучевых трубок. Электронно-лучевая трубка

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

хорошую работу на сайт">

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

МИНИСТЕРСТВО КУЛЬТУРЫ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ИНСТИТУТ

КИНО И ТЕЛЕВИДЕНИЯ»

КУРСОВАЯ РАБОТА

на тему «ПРИНЦИП РАБОТЫ ЭЛЕКТРОННО-ЛУЧЕВОЙ ТРУБКИ. ДОСТОИНСТВА И НЕДОСТАТКИ»

по дисциплинеФизические основы получения информации

выполнила: студент 3 курса Викторович А.И

ФТКиТ Приборостроение 1группа

Проверила Газеева И.В.

Санкт-Петербург 2017

  • 1. Общие сведения
  • 2. Принцип работы принимающей электронно-лучевой трубки (кинескопа)
  • 3. Цветные кинескопы
  • 4. Достоинства и недостатки ЭЛТ
  • 1. Общие сведения
  • лучевой отклонение кинескоп цветной

В электронно-лучевых приборах создается тонкий пучок электронов (луч), который управляется электрическим или магнитным полем либо обоими полями. К этим приборам относятся электроннолучевые трубки индикаторных устройств радиолокаторов, для осциллографии, приема телевизионных изображений (кинескопы), передачи телевизионных изображений, а также запоминающие трубки, электронно-лучевые переключатели, электронные микроскопы, электронные преобразователи изображений и др. Большинство электронно-лучевых приборов служит для получения видимых изображений на люминесцентном экране; их называют электронно-графическими. Рассматриваются наиболее распространенные осциллографические и приемные телевизионные трубки, к которым также близки индикаторные трубки радиолокационных и гидроакустических станций.

Трубки могут быть с фокусировкой электронного луча электрическим или магнитным полем и с электрическим или магнитным отклонением луча. В зависимости от цвета изображения на люминесцентном экране бывают трубки с зеленым, оранжевым или желто-оранжевым свечением -- для визуального наблюдения, синим -- для фотографирования осциллограмм, белым или трехцветным -- для приема телевизионных изображений. Кроме того, трубки изготовляются с различной длительностью свечения экрана после прекращения ударов электронов (так называемым послесвечением). Трубки различаются также по размерам экрана, материалу баллона (стеклянные или металлостеклянные) и другим признакам.

2. Принцип работы принимающей электронно-лучевой трубки (кинескопа)

В основу работы электронно-лучевой трубки (CRT) или просто кинескопа, как и любой электронной лампы, положен принцип электронной эмиссии.Как мы уже знаем, проводимость вещества обусловлена наличием в нем свободных электронов. Под воздействием тепла, эти свободные частицы покидают сам проводник, образуя как-бы "облако" из электронов. Это свойство и получило название "термоэлектронной эмиссии". Если вблизи этого проводника, дополнительно подогреваемый нитью накала (назовём его катодом), разместить еще один электрод с положительным потенциалом, то свободные частицы, выделенные из катода термоэмиссией, начнут перемещаться в пространстве (притягиваться) в сторону этого электрода и возникнет электрический ток. А если между основными электродами (анодом и катодом) разместить дополнительные электроды (как правило сетчатые) то мы получим еще и возможность регулировать этот поток электронов. Такой принцип используется в электронных лампах, и конечно-же в кинескопах.В кинескопе телевизора (или электронно-лучевой трубке осциллографа) анодом служит специальный слой (люминофор), ударяясь о который, электроны вызывают свечение.Если подключить кинескоп к телевизору в таком виде, как описано выше, мы увидим на экране просто святящуюся точку. Для того чтобы получить полноценное изображение, необходимо пучок летящих электронов отклонить.

Во-первых, по горизонтали: строчная развертка.Во-вторых, по вертикали: кадровая развертка.

Для отклонения луча используется отклоняющая система. (ОС), которая представляет собою набор катушек: две на вертикальное отклонение и две на горизонтальное. Сигнал, подаваемый на эти катушки, создаёт в них магнитное поле, которое и отклоняет луч. Сама отклоняющая система одевается на горловину кинескопа.

Строчная катушка отклоняет пучок электронов по горизонтали. (кстати, на зарубежных схемах как раз используется чаще термин "HORIZONTAL" чем "строчная развертка"). Причем происходит это с довольно большой частотой: около 15 кГц.

Для того, чтобы развернуть растр полностью, используется также и вертикальное (кадровое) отклонение луча. При этом частота в кадровой катушке намного ниже (50Гц).

Получится следующая картина: за один полный кадр луч успевает пробежать слева-направо несколько раз (а точнее 625), рисуя на экране как-бы строку.

Чтобы на экране не было видно линий обратного хода используется специальная схема гашения луча

Регулируя напряжения на электродах кинескопа, можно регулировать яркость свечения (скорость потока электронного пучка), его контрастность а также фокусировать луч. На практике (в реальных условиях) сигнал изображения подаётся на катод кинескопа а регулировка яркости происходит изменением напряжения на модуляторе.Рассмотренный выше пример является по-сути только - лишь одноцветным вариантом кинескопа, где сигнал изображения отличается только градациями (разностью яркостных участков) изображения.

Угол отклонения луча

Углом отклонения луча ЭЛТ называется максимальный угол между двумя возможными положениями электронного луча внутри колбы, при которых на экране ещё видно светящееся пятно. От величины угла зависит отношение диагонали (диаметра) экрана к длине ЭЛТ. У осциллографических ЭЛТ составляет как правило до 40°, что связано с необходимостью повысить чувствительность луча к воздействию отклоняющих пластин и обеспечить линейность характеристики отклонения. У первых советских телевизионных кинескопов с круглым экраном угол отклонения составлял 50°, у чёрно-белых кинескопов более поздних выпусков был равен 70°, начиная с 1960-х годов увеличился до 110° (один из первых подобных кинескопов -- 43ЛК9Б). У отечественных цветных кинескопов составляет 90°.

При увеличении угла отклонения луча уменьшаются габариты и масса кинескопа, однако:

· увеличивается мощность, потребляемая узлами развёртки. Для решения этой проблемы уменьшался диаметр горловины кинескопа, что, однако, потребовало изменения конструкции электронной пушки.

· возрастают требования к точности изготовления и сборки отклоняющей системы, что было реализовано путём компоновки кинескопа с отклоняющей системой в единый модуль и сборки его в заводских условиях.

· возрастает число необходимых элементов настройки геометрии растра и сведения.

Всё это привело к тому, что в некоторых областях до сих пор применяются 70-градусные кинескопы. Также угол в 70° продолжает применяться в малогабаритных чёрно-белых кинескопах (например, 16ЛК1Б), где длина не играет такой существенной роли.

Ионная ловушка

Так как внутри ЭЛТ невозможно создать идеальный вакуум, внутри остаётся часть молекул воздуха. При столкновении с электронами из них образуются ионы, которые, имея массу, многократно превышающую массу электронов, практически не отклоняются, постепенно выжигая люминофор в центре экрана и образуя так называемое ионное пятно. Для борьбы с этим до середины 1960-х годов применялся принцип «ионной ловушки»: ось электронной пушки была расположена под некоторым углом к оси кинескопа, а расположенный снаружи регулируемый магнит обеспечивал поле, поворачивающее поток электронов к оси. Массивные же ионы, двигаясь прямолинейно, попадали в собственно ловушку.

Однако данное построение вынуждало увеличивать диаметр горловины кинескопа, что приводило к росту необходимой мощности в катушках отклоняющей системы.

В начале 1960-х годов был разработан новый способ защиты люминофора: алюминирование экрана, кроме того, позволившее вдвое повысить максимальную яркость кинескопа, и необходимость в ионной ловушке отпала.

Задержка подачи напряжения на анод либо модулятор

В телевизоре, строчная развёртка которого выполнена на лампах, напряжение на аноде кинескопа появляется только после прогрева выходной лампы строчной развёртки и демпферного диода. Накал кинескопа к этому моменту успевает разогреться.

Внедрение в узлы строчной развёртки полностью полупроводниковой схемотехники породило проблему ускоренного износа катодов кинескопа по причине подачи напряжения на анод кинескопа одновременно с включением. Для борьбы с этим явлением были разработаны любительские узлы, обеспечивавшие задержку подачи напряжения на анод либо модулятор кинескопа. Интересно, что в некоторых из них, несмотря на то, что они были предназначены для установки в полностью полупроводниковые телевизоры, в качестве элемента задержки использовалась радиолампа. Позднее начали выпускаться телевизоры промышленного производства, в которых такая задержка предусмотрена изначально.

3. Цветные кинескопы

Устройство цветного кинескопа. 1 --Электронные пушки. 2 -- Электронные лучи. 3 -- Фокусирующая катушка. 4 -- Отклоняющие катушки. 5 -- Анод. 6 -- Маска, благодаря которой красный луч попадает на красный люминофор, и т. д. 7 -- Красные, зелёные и синие зёрна люминофора. 8 -- Маска и зёрна люминофора (увеличено).

Цветной кинескоп отличается от чёрно-белого тем, что в нём три пушки -- «красная», «зелёная» и «синяя» (1). Соответственно, на экран 7 нанесены в некотором порядке три вида люминофора -- красный, зелёный и синий (8 ).

В зависимости от типа применённой маски, пушки в горловине кинескопа расположены дельтообразно (в углах равностороннего треугольника) либо планарно (на одной линии). Некоторые одноимённые электроды разных электронных пушек соединены проводниками внутри кинескопа. Это ускоряющие электроды, фокусирующие электроды, подогреватели (соединены параллельно) и, часто, модуляторы. Такая мера необходима для экономии количества выводов кинескопа, ввиду ограниченных размеров его горловины.

На красный люминофор попадает только луч от красной пушки, на зелёный -- только от зелёной, и т. д. Это достигается тем, что между пушками и экраном установлена металлическая решётка, именуемая маской (6 ). В современных кинескопах маска выполнена из инвара -- сорта стали с небольшим коэффициентом температурного расширения.

ЭЛТ с теневой маской

У ЭЛТ этого типа маска представляет собой металлическую (обычно инваровую) сетку с круглыми отверстиями напротив каждой триады элементов люминофора. Критерием качества (чёткости) изображения является так называемый шаг зерна или точки (dot pitch), который характеризует расстояние в миллиметрах между двумя элементами (точками) люминофора одинакового цвета. Чем меньше это расстояние, тем более качественное изображение сможет воспроизводить монитор. Экран ЭЛТ с теневой маской обычно представляет собой часть сферы достаточно большого диаметра, что может быть заметно по выпуклости экрана мониторов с таким типом ЭЛТ (а может и не быть заметно, если радиус сферы очень большой). К недостаткам ЭЛТ с теневой маской следует отнести то, что большое количество электронов (порядка 70%) задерживается маской и не попадает на люминофорные элементы. Это может привести к нагреву и тепловой деформации маски (что в свою очередь может вызвать искажение цветов на экране). Кроме того, в ЭЛТ такого типа приходится использовать люминофор с большей светоотдачей, что приводит к некоторому ухудшению цветопередачи. Если же говорить о достоинствах ЭЛТ с теневой маской, то следует отметить хорошую чёткость получаемого изображения и их относительную дешевизну.

ЭЛТ с апертурной решёткой

В такой ЭЛТ точечные отверстия в маске (обычно изготавливаемой из фольги) отсутствуют. Вместо них в ней проделаны тонкие вертикальные отверстия от верхнего края маски до нижнего. Таким образом она представляет собой решётку из вертикальных линий. Из-за того что маска изготовлена таким образом она очень чувствительна ко всякому виду вибраций, (которые например могут возникнуть при лёгком постукивание по экрану монитора. Она дополнительно удерживается тонкими горизонтальными проволочками. В мониторах с размером 15 дюймов такая проволочка одна в 17 и 19 две, а в больших три и более. На всех таких моделях заметны тени от этих проволочек особенно на светлом экране. Сначала они могут несколько раздражать, но со временем вы привыкните. Наверное это можно отнести к основным недостаткам ЭЛТ с апертурной решёткой. Экран таких ЭЛТ представляет собой часть цилиндра большого диаметра. В результате он полностью плоский по вертикали и чуть выпуклый по горизонтали. Аналогом шага точки (как для ЭЛТ с теневой маской) здесь является шаг полосы (strip pitch) - минимальное расстояние между двумя полосами люминофора одинакового цвета (измеряется в миллиметрах). Достоинством таких ЭЛТ по сравнению с предыдущим, является более насыщенными цветами и более контрастным изображением, а

так же более плоский экран, что достаточно ощутимо снижает количество бликов на нём. К недостаткам можно отнести чуть меньшую чёткость текста на экране.

ЭЛТ с щелевой маской

ЭЛТ с щелевой маской представляет собой компромисс между двумя уже описанными ранее технологиями. Здесь отверстия в маске, соответствующие одной триаде люминофора, выполнены в виде продолговатых вертикальных щелей небольшой длины. Соседние вертикальные ряды таких щелей немного смещены друг относительно друга. Считается, что ЭЛТ с таким типом маски обладают сочетанием всех достоинств, присущих ей. На практике же, разница между изображением на ЭЛТ со щелевой или апертурной решёткой мало заметна. ЭЛТ с щелевой маской обычно имеют названия Flatron, DynaFlat и др.

4. Достоинства и недостатки ЭЛТ

Достоинства кинескопа:

1. Широкий цветовой охват дисплея на основе ЭЛТ за счет использования люминофоров с высокой чистотой излучаемого цвета.

2. Достаточные для большинства применений яркость и контраст изображения.

3. Относительно низкая стоимость.

4. Изображение можно наблюдать в условиях прямой засветки солнечными лучами, в отличие от ЖК экранов (на которых оно темнеет и исчезает).

5. Малая инерционность. Электронный луч может управляться с высокой скоростью и поэтому ЭЛТ находят применение в осциллографах, телекинопроекторах (для перевода изображения с кинопленки в телевизионный сигнал в реальном времени).

Недостатки кинескопа:

1. Большие габариты и масса.

2. Сложность изготовления ЭЛТ больших диагоналей.

3. Повышенное энергопотребление.

4. Ухудшение цветопередачи со временем из-за старения люминофора и материала катодов.

5. Мелькания изображения.

6. Вредные электромагнитные излучения.

7. При неправильной настройке дисплея ЭЛТ возможно появление геометрических искажений, несведения, расфокусировки.

8. ЭЛТ подвержены воздействию внешних магнитных полей.

9. Повышенные требования к электробезопасности. Присутствие внутри дисплея высоковольтных цепей предъявляет особые требования к их изоляции и качеству изготовления электронных компонентов в этих цепях.

10. Когда на экране долго отображается неподвижное изображение, электронный луч "ударяет" по точкам ("зернам") люминофора миллионы раз. При этом люминофор "выжигается" и на экране появляется постоянное "призрачное" изображение.

11. ЭЛТ взрывоопасны (поскольку внутри колбы вакуум). Поэтому они имеют колбу из толстого стекла. Утилизация таких дисплеев должна происходить с учетом требований безопасности.

Список используемой литературы

1. Физические основы получения информации: опорный конспект / И.В. Газеева. - СПб.: СПбГИКиТ, 2017. - 211 с.

2. https://ru.wikipedia.org/wiki/Кинескоп

3. http://megabook.ru

Размещено на Allbest.ru

Подобные документы

    Понятие электрического тока. Поведение потока электронов в разных средах. Принципы работы вакуумно-электронной лучевой трубки. Электрический ток в жидкостях, в металлах, полупроводниках. Понятие и виды проводимости. Явление электронно-дырочного перехода.

    презентация , добавлен 05.11.2014

    Организация процесса электронно-лучевого испарения. Формула электростатического напряжения между катодом и анодом, повышения температуры поверхности мишени за одну секунду. Расчёт величины тока луча и температуры на поверхности бомбардируемого материала.

    статья , добавлен 31.08.2013

    Устройство, принцип действия и назначение электронно-коммутируемого вентилятора со встроенной электроникой. Его преимущество и испытание работы. Отличие синхронных и асинхронных двигателей. Принцип пропорционально-интегрально-дифференциального регулятора.

    лабораторная работа , добавлен 14.04.2015

    Обзор аппарата Xtress 3000 G3/G3R и используемой в нем рентгеновской трубки TFS-3007-HP, анализ комплектации и документации. Разработка рентгеновской трубки 0,3РСВ1-Cr: конструкция и тепловой расчет анодного и катодного узлов, изолятора, кожуха.

    дипломная работа , добавлен 17.06.2012

    Понятие и сферы практического использования электронно-оптических преобразователей как устройств, преобразующих электронные сигналы в оптическое излучение или в изображение, доступное для восприятия человеком. Устройство, цели и задачи, принцип действия.

    презентация , добавлен 04.11.2015

    Описание технологии изготовления электронно-дырочного перехода. Классификация разработанного электронно-дырочного перехода по граничной частоте и рассеиваемой мощности. Изучение основных особенностей использования диодных структур в интегральных схемах.

    курсовая работа , добавлен 14.11.2017

    Получение изображения в монохромных электронно-лучевых трубках. Свойства жидких кристаллов. Технологии изготовления жидкокристаллического монитора. Достоинства и недостатки дисплеев на основе плазменных панелей. Получение стереоскопического изображения.

    презентация , добавлен 08.03.2015

    Изучение светоизлучающего диода как полупроводникового прибора с электронно-дырочным переходом, создающего оптическое излучение при пропускании через него электрического тока. История изобретения, преимущества и недостатки, сфера применения светодиода.

    презентация , добавлен 29.10.2014

    Принцип устройства и действия тепловой трубки Гровера. Основные способы передачи тепловой энергии. Преимущества и недостатки контурных тепловых труб. Перспективные типы кулеров на тепловых трубах. Конструктивные особенности и характеристики тепловых труб.

    реферат , добавлен 09.08.2015

    Сравнительная характеристика датчиков. Выбор частотного датчика уровня и рекомендованного способа измерения, его достоинства и недостатки. Параметры и профиль уровнемерной трубки. Система возбуждения-съёма, погрешности нелинейности и температуры.

Как работает электронно-лучевая трубка?

Электронно-лучевые трубки - это электровакуумные приборы, в которых образуется электронный пучок малого поперечного сечения, причем электронный пучок может отклоняться в желаемом направлении и, попадая на люминесцентный экран, вызывать его свечение (рис. 5.24). Электронно-лучевая трубка является электронно-оптическим преобразователем, превращающим электрический сигнал в соответствующее ему изображение в виде импульсного колебания, воспроизводимого на экране трубки. Электронный пучок образуется в электронном прожекторе (или электронной пушке), состоящем из катода и фокусирующих электродов. Первый фокусирующий электрод, который называют также модулятором , выполняет функции сетки с отрицательным смещением, направляющей электроны к оси трубки. Изменение напряжения смещения сетки влияет на число электронов, а следовательно, на яркость получаемого на экране изображения. За модулятором (в направлении к экрану) расположены следующие электроды, задачей которых является фокусирование и ускорение электронов. Они действуют на принципе электронных линз. Фокусирующе-ускоряющие электроды называются анодами и на них подается положительное напряжение. В зависимости от типа трубки анодные напряжения имеют значения от нескольких сотен вольт до нескольких десятков киловольт.

Рис. 5.24. Схематическое изображение электронно-лучевой трубки:

1 - катод; 2 - анод I: 3 - анод II; 4 - горизонтальные отклоняющие пластины; 5 - электронный пучок; 6 - экран; 7 - вертикальные отклоняющие пластины; 8 - модулятор


В некоторых трубках фокусировку пучка производят с помощью магнитного поля путем использования катушек, расположенных снаружи лампы, вместо электродов, находящихся внутри трубки и создающих фокусирующее электрическое поле. Отклонение пучка также осуществляется двумя методами: с помощью электрического или магнитного поля. В первом случае в трубке помещают отклоняющие пластины, во втором - снаружи трубки монтируют отклоняющие катушки. Для отклонения как в горизонтальном, так и в вертикальном направлениях используют пластины (или катушки) вертикального или горизонтального отклонения луча.

Экран трубки покрыт изнутри материалом - люминофором, который светится под влиянием бомбардировки электронами. Люминофоры отличаются различным цветом свечения и разным временем свечения после прекращения возбуждения, которое называется временем послесвечения . Обычно оно составляет от долей секунды до нескольких часов в зависимости от назначения трубки.

Электронно-лучевая трубка (ЭЛТ) - электронный прибор, имеющий форму трубки, удлиненной (часто с коническим расширением) в направлении оси электронного луча, который формируется в ЭЛТ. ЭЛТ состоит из электронно-оптической системы, отклоняющей системы и флуоресцентного экрана или мишени. Ремонт телевизоров в Бутово , обращайтесь к нам за помощью.

Классификация ЭЛТ

Классификация ЭЛТ чрезвычайно затруднена, что объясняется их чрезвычайн

о широким применением в науке и технике и возможностью модификации конструкции с целью получения технических параметров, которые необходимы для реализации конкретной технической идеи.

Зависимости от метода управления электронным лучом ЭЛТ подразделяются на:

электростатические (с электростатической системой отклонения лучей);

электромагнитные (с электромагнитной системой отклонения лучей).

В зависимости от назначения ЭЛТ подразделяются на:

электронно-графические трубки (приемные, телевизионные, осциллографические, индикаторные, телевизионные знакодрукувальни, кодирующие и др..)

оптико-электронные претворюючи трубки (передающие телевизионные трубки, электронно-оптические преобразователи и др..)

электронно-лучевые переключатели (коммутаторы);

другие ЭЛТ.

Электронно-графические ЭЛТ

Электронно-графические ЭЛТ - группа электронно-лучевых трубок, применяемых в различных областях техники, для преобразования электрических сигналов в оптические (преобразование типа «сигнал - свет»).

Электронно-графические ЭЛТ подразделяются:

В зависимости от области применения:

приемной телевизионные (кинескопы, ЭЛТ с сверхвысоким разрешением для специальных телевизионных систем, и др..)

приемной осциллографические (низкочастотные, высокочастотные, сверхвысокочастотные, импульсные высоковольтные и др..)

приемной индикаторные;

запоминающие;

знакодрукувальни;

кодирующие;

другие ЭЛТ.

Строение и действие ЭЛТ с электростатической системой отклонения лучей

Электронно-лучевая трубка состоит из катода (1), анода (2), выравнивающего цилиндра (3), экрана (4), регуляторов плоскости (5) и высоты (6).

Под действием фото-или термоэмиссии из металла катода (тонкая проводниковая спираль) выбиваются электроны. Поскольку между анодом и катодом поддерживается напряжение (разность потенциалов) в несколько кило вольт, то эти электроны, выравниваясь цилиндром, движутся по направлению анода (пустотелый цилиндр). Пролетая сквозь анод электроны попадают к регуляторам плоскости. Каждый регулятор - это две металлические пластины, разноименно заряженные. Если левую пластину зарядить отрицательно, а правую положительно, то электроны проходя сквозь них будут отклоняться вправо, и наоборот. Аналогично действуют и регуляторы высоты. Если же на эти пластины подать переменный ток, то можно будет контролировать поток электронов как в горизонтальной, так и вертикальной плоскостях. В конце своего пути поток электронов попадает на экран, где может вызвать изображения.

Электронно-лучевая трубка, изобретенная еще в 1897 г., является электронно-вакуумным прибором, который имеет много общего с обычной электронной лампой. Внешне трубка представляет собой стеклянную колбу с удлиненной горловиной и плоской торцовой частью— экраном.

Внутри колбы и горловины, так же как и внутри баллона электронной лампы, располагаются электроды, выводы которых, так же как и у лампы, подпаяны к ножкам цоколя.

Основное назначение электронно-лучевой трубки — образование видимого изображения с помощью электрических сигналов. Подводя к электродам трубки соответствующие напряжения, можно рисовать на ее экране графики переменных напряжения и токов, характеристики различных радиоустройств, а также получать движущиеся изображения, подобным тем, которые мы видим на экране кино.

Рис. 1. Чудесный карандаш.

Все это делает электронно-лучевую трубку незаменимой частью телевизоров, радиолокаторов, многих измерительных и вычислительных приборов.

Какой же «быстрый карандаш» успевает зарисовывать на экране электроннолучевой трубки импульсы тока, которые длятся миллионные доли секунды? Каким образом удается подбирать тона сложного рисунка? Как можно мгновенно «стирать» с экрана одно изображение и с такой же быстротой создать другое? (рис. 1).

Люминесцирующий экран к электронный луч. В основе работы электронно-лучевой трубки лежит способность некоторых веществ (виллемит, сернистый цинк, алюминат цинка:) светиться (люминесцировать) под действием электронной бомбардировки.

Если таким люминесцирующим веществом покрыть изнутри анод обычной электронной лампы, то он будет ярко светиться за счет бомбардировки электронами, образующими анодный ток. Между прочим, такой люминесцирующий анод используется в одной из специальных электронных ламп — оптическом индикаторе настройки 6Е5С. Люминесцирующим составом покрывают изнутри утолщенный торец колбы, образуя таким образам люминесцирующий экран электронно-лучевой трубки. С помощью специального устройства —«электронной пушки»— из горловины трубки на экран направляютузкий пучок электродов —«электронный луч».

Рис. 2. Экран светится под действием пучка электронов.

В том месте, где электроны ударяются о люминесцирующий слой, на экране образуется светящаяся точка, которая отлично видна (с торца) снаружи трубки сквозь стекло. Чем большее количество электронов образует луч и чем с большей скоростью эти электроны движутся, тем ярче светящаяся точка на люминесцирующем экране.

Если электронный луч перемещать в пространстве, то и светящаяся точка также будет двигаться по экрану, причем если перемещение луча происходит достаточно быстро, то наш глаз вместо движущейся точки увидит на экране сплошные светящиеся линии (рис. 2).

Если электронным лучом быстро прочертить весь экран строка за строкой и при этом соответствующим образом менять ток луча (т. е. яркость светящейся точки), то на экране можно будет получить сложную и достаточно четкую картину.

Таким образом, изображение на люминесцирующем экране трубки получается с помощью остро направленного пучка электронов и поэтому, так же как и в электронной лампе, основные процессы в трубке связаны с получением и упорядоченным движением свободных электронов в вакууме.

Электронно-лучевая трубка и триод

Электроннолучевая трубка во многом напоминает усилительную лампу — триод. Так же как и в лампе, в трубке имеется катод, испускающий электроны, необходимые для образования электронного луча. От катода трубки электроны движутся к экрану, который, так же как и анод триода, имеет высокий положительный потенциал относительно катода.

Рис. 3. Возникновение вторичных электронов

Однако подача положительного напряжения непосредственно «а экран затруднена, так как люминесцирующее вещество является полупроводником. Поэтому положительные напряжения на экране приходится создавать косвенным путем. Колбу изнутри покрывают слоем графита, на который и подают положительное напряжение. Электроны, образующие луч, с силой ударяя в люминесцирующее вещество, «выбивают» из него так называемые «вторичные» электроны, которые упорядоченно движутся к графитовому покрытию под действием положительного напряжения на нем (рис. 3).

В первый момент число вторичных электронов, покидающих экран, намного превышает число попадающих в него электронов луча. Это приводит к тому, что в атомах люминесцирующего вещества образуется нехватка электронов, т. е. экран приобретает положительный потенциал. Равновесие между числом попадающих на экран электронов и числом выбиваемых из него вторичных электронов установится лишь тогда, когда напряжение на экране трубки окажется близким к напряжению на графитовом покрытии. Таким образом, ток в электронно-лучевой трубке замыкается по пути катод — экран — графитовое покрытие, а следовательно, именно графитовое покрытие играет роль анода, хотя электроды, вылетевшие из катода, непосредственно на него не попадают.

Вблизи катода трубки располагается управляющий электрод (модулятор), который играет ту же роль, что и управляющая сетка триода. Меняя напряжение на управляющем электроде, можно изменять величину тока луча, что в свою очередь приведет к изменению яркости светящейся на экране точки.

Однако наряду со сходством между усилительной электронной лампой и электронно-лучевой трубкой в работе последней имеются особенности, принципиально отличающие ее от триода.

Во-первых, электроны движутся от катода к экрану трубки узким пучком, в то время как к аноду лампы они движутся «широким фронтом».

Во-вторых, для того чтобы, передвигая светящуюся точку по экрану, создавать на нем изображение, необходимо изменять направление движения летящих к экрану электронов и, таким образом, перемещать электронный луч в пространстве.

Из всего этого следует, что важнейшими процессами, отличающими трубку от триода, являются образование тонкого электронного луча и отклонение этого луча в разные стороны.

Образование и фокусировка электронного луча

Образование электронного луча начинается уже около катода электронно-лучевой трубки, который состоит из маленького никелевого цилиндра с колпачком, покрытым эмиттирующим (хорошо испускающим электроны при нагревании) материалом. Внутри цилиндра помещается изолированная проволока — подогреватель. Благодаря такой конструкции катода электроны излучаются со значительно меньшей поверхности, чем в обычной электронной лампе. Это сразу создает некоторую направленность пучка летящих от катода электронов.

Катод электронно-лучевой трубки помещен в тепловой экран — металлический цилиндр, торцовая часть которого, направленная в сторону колбы, открыта. Благодаря этому электроны движутся от катода не во все стороны, как это имеет место в лампе, а только в направлении люминесцирующето экрана. Однако, несмотря на специальную конструкцию катода и тепловой экран, поток движущихся электронов остается чрезмерно широким.

Резкое сужение потока электронов осуществляется управляющим электродом, который хотя и выполняет роль управляющей сетки, конструктивно ничего общего с сеткой не имеет. Управляющий электрод выполнен в виде накрывающего катод цилиндра, в торцовой части которого сделано круглое отверстие диаметром в несколько десятых долей миллиметра.

На управляющий электрод подают значительное (несколько десятков вольт) отрицательное смещение, благодаря чему он отталкивает электроны, обладающие, как известно, отрицательным зарядом. Под действием отрицательного напряжения траектории (пути движения) электронов, проходящих сквозь узкое отверстие в управляющем электроде, «сжимаются» к центру этого отверстия и таким образом образуется довольно тонкий электронный луч.

Однако для нормальной работы трубки нужно не только создать электронный луч, но и произвести его фокусировку, т. е. добиться того, чтобы траектории всех электронов луча сходились на экране в одной точке. Если фокусировки луча не производить, то на экране вместо светящейся точки появится довольно большое светящееся пятно и вследствие этого изображение окажется расплывчатым или, как говорят фотолюбители, «нерезким».

Рис. 4. Электронная пушка и ее оптическая аналогия.

Фокусировка луча осуществляется электронной оптической системой, которая действует на движущиеся электроны так же, как и обычная оптика на световые лучи. Электронная оптическая система образуется электростатическими линзами (статическая фокусировка) либо электромагнитными линзами (магнитная фокусировка), конечный результат действия которых одинаков.

Электростатическая линза — это не что иное (рис. 4,а), как образованное с помощью специальных электродов электрическое поле, под действием которого искривляются траектории электронов луча. В трубке со статической фокусировкой (рис. 4,б) обычно имеются две линзы, для образования которых используют уже известный нам управляющий электрод, а также два специальных электрода: первый и второй аноды. Оба эти электрода представляют собой металлические цилиндры, иногда разных диаметров, на которые подают большое положительное (относительно катода) напряжение: на первый анод — обычно 200—500 в, на второй — 800—15 000 в.

Первая линза образуется между управляющим электродом и первым анодом. Ее оптическим аналогом является короткофокусная собирающая линза, состоящая из двух элементов: двояковыпуклой и двояковогнутой линз. Эта линза дает внутри первого анода изображение катода, в свою очередь проектируемого на экран трубки с помощью второй линзы.

Вторая линза образуется полем между первым и вторым анодами и аналогична первой линзе, за исключением того, что ее фокусное расстояние значительно больше. Таким образом, первая линза играет роль конденсора, а вторая линза — главной проекционной линзы.

Внутри анодов располагают тонкие металлические пластины с отверстиями в центре — диафрагмы, которые улучшают фокусирующие свойства линз.

Изменяя напряжение на любом из трех образующих электростатические линзы электродов, можно менять свойства линз, добиваясь хорошей фокусировки луча. Обычно это делают путем изменения напряжения на первом аноде.

Несколько слов о названиях электродов «первый анод» и «второй анод». Раньше мы установили, что роль анода в электронно-лучевой трубке играет графитовое покрытие вблизи экрана. Однако первый « второй аноды, в основном предназначенные для фокусировки луча, благодаря наличию на них большого положительного напряжения ускоряют электроны, т. е. делают то же, что и анод усилительной лампы. Поэтому названия этих электродов можно считать оправданными, тем более что на них попадает некоторая часть вылетающих из катода электронов.

Рис. 5. Трубка с магнитной фокусировкой. 1 —управляющий электрод; 2—первый анод; 3—фокусирующая катушка; 4—графитовое покрытие; 5—-люминесцирующий экран; 6—колба.

В электронно-лучевых трубках с магнитной фокусировкой (рис. 5) второй анод отсутствует. Роль собирающей линзы в этой трубке играет магнитное поле. Это поле образуется охватывающей горловину трубки катушкой, по которой пропускают постоянный ток. Магнитное поле катушки создает вращательное движение электронов. В то же время электроны с большой скоростью движутся параллельно оси трубки к люминесцирующему экрану под действием положительного напряжения на нем. В результате этого траектории электронов представляют собой кривую, «напоминающую винтовую линию.

По мере приближения к экрану скорость поступательного движения электронов возрастает, а действие магнитного поля ослабляется. Поэтому радиус кривой постепенно уменьшается и вблизи экрана пучок электронов вытягивается в тонкий прямой луч. Хорошей фокусировки, как правило, добиваются путем изменения тока в фокусирующей катушке, т. е. путем изменения напряженности магнитного поля.

Всю систему для образования электронного луча в трубках часто называют «электронной пушкой» или «электронным прожектором».

Отклонение электронного луча

Отклонение электронного луча, так же как и его фокусировка, осуществляется с помощью электрических полей (электростатическое отклонение) либо с помощью магнитных полей (магнитное отклонение).

В трубках с электростатическим (рис. 6,а) отклонением электронный луч, прежде чем попасть на экран, проходит между четырьмя плоскими металлическими пластинами-электродами, которые получили название отклоняющих пластин.

Рис. 6. Управление лучом при помощи. а—электростатического и б—магнитного полей.

В электронно-лучевой трубке (ЭЛТ) для воспроизведения изображения на люминесцентном экране используется пучок электронов, получаемых с нагретого катода. Катод изготовляют оксидным, с косвенным нака­лом, в виде цилиндра с подогревателем. Оксидный слой нанесен на донышко катода. Вокруг катода располагается управляющий электрод, называемый модулятором, цилиндрической формы с отверстием в до­нышке. Этот электрод служит для управления плотностью электронного потока и для предва­рительной его фокусировки. На модулятор подается отрицательное напряжение в несколько десятков вольт. Чем это напряжение больше, тем больше электронов возвращается на катод. Другие элек­троды, также цилиндрической формы, являются анодами. В ЭЛТ их минимум два. На втором аноде напряжение бывает от 500 В до нескольких киловольт (порядка 20 кВ), а на первом аноде напряжение в несколько раз меньше. Внутри анодов имеются перегородки с отвер­стиями (диафрагмы). Под действием ускоряющего поля анодов электроны приобретают зна­чительную скорость. Окончательная фокусировка электронного потока осуществляется с по­мощью неоднородного электрического поля в пространстве между анодами, а также благода­ря диафрагмам. Система, состоящая из катода, модулятора и анодов, называется электронным прожектором (электронной пушкой) и служит для создания электронного луча, т. е. тонкого потока элек­тронов, летящих с большой скоростью от второго анода к люминесцентному экрану. Электронный прожектор размещается в узкой горловине колбы ЭЛТ. Этот луч отклоняется под действием электрического или магнитного поля, а интенсивность луча можно изменять посредством управляющего электрода, меняя тем самым яркость пятна. Люминесцентный экран формируется путем нанесения тонкого слоя люминофора на внутреннюю поверхность торцевой стенки конической части ЭЛТ. Кинетическая энергия электронов, бомбардирующих экран, превращается в видимый свет.

ЭЛТ С электростатическим управлением.

Электрические поля обычно используются в ЭЛТ с экраном малого размера. В системах отклонения электрическим полем вектор поля ориентирован перпендикулярно начальной траектории луча. Отклонение осуществляется приложением разности потенциалов к паре отклоняющих пластин рисунок ниже. Обычно отклоняющие пластины делают отклонение в горизонтальном направлении пропорциональным времени. Это достигается приложением к отклоняющим пластинам напряжения, которое равномерно возрастает, пока луч перемещается поперек экрана. Затем это напряжение быстро падает до своего исходного уровня и снова начинает равномерно возрастать. Сигнал, который требует исследования, подают на пластины, отклоняющие в вертикальном направлении. Если продолжительность однократной горизонтальной развертки равна периоду или соответствует частоте повторения сигнала, на экране будет непрерывно воспроизводиться один период волнового процесса.

1- экран ЭЛТ, 2-катод, 3- модулятор, 4-первый анод, 5- второй анод, П - отклоняющие пластины.

ЭЛТ с электромагнитным управлением

В тех случаях, когда требуется большое отклонение, использование электрического поля для отклонения луча становится неэффективным.

Электромагнитные трубки имеют электронную пушку, такую же, как и электростатические. Разница состоит в том, что напряжение на первом аноде не изменяется, и аноды предназначе­ны только для ускорения электронного потока. Магнитные поля требуются для отклонения луча в телевизионных ЭЛТ с большими экранами.

Фокусировка электронного луча осуществляется при помощи фокусирующей катушки. Фокусирующая катушка имеет рядовую намотку и одевается прямо на колбу трубки. Фокуси­рующая катушка создает магнитное поле. Если электроны движутся по оси, то угол между вектором скорости и магнитными силовыми линиями будет равен 0, следовательно, сила Лорен­ца равна нулю. Если электрон влетает в магнитное под углом, то за счет силы Лоренца траек­тория электрона будет отклоняться к центру катушки. В результате все траектории электронов будут пересекаться в одной точке. Изменяя ток через фокусирующую катушку, можно изме­нять местоположение этой точки. Добиваются того, чтобы эта точка находилась в плоскости экрана. Отклонение луча осуществляется при помощи магнитных по­лей, формируемых двумя парами отклоняющих катушек. Одна пара - катушки вертикального отклонения, и другая - катушки таким образом, что их магнитные силовые линии на осевой линии будут вза­имно перпендикулярны. Катушки имеют сложную форму и располагаются на горловине трубки.


При использовании магнитных полей для отклонения луча на большие углы ЭЛТ получается короткой, а также позволяет изготавливать экраны больших размеров.

Кинескопы.

Кинескопы относятся к комбинированным ЭЛТ, то есть они имеют электро­статическую фокусировку и электромагнитное отклонение луча для увеличения чувствитель­ности. Основным отличием кинескопов от ЭЛТ является следующее: электронная пушка кине­скопов имеет дополнительный электрод, который называется ускоряющим электродом. Он располагается между модулятором и первым анодом, на него подается положительное напря­жение в несколько сотен вольт относительно катода, и он служит для дополнительного уско­рения электронного потока.

Схематическое устройство кинескопа для черно-белого телевидения: 1- нить подогревателя катода; 2- катод; 3- управляющий электрод; 4- ускоряющий электрод; 5- первый анод; 6- второй анод; 7- проводящее покрытие (аквадаг); 8 и 9- катушки вертикального и горизонтального отклонения луча; 10- электронный луч; 11- экран; 12- вывод второго анода.

Вторым отличием является то, что экран кинескопа, в отличие от ЭЛТ, трехслойный:

1 слой - наружный слой - стекло. К стеклу экрана кинескопа предъявляются повышенные тре­бования по параллельности стенок и по отсутствию посторонних включений.

2 слой - это люминофор.

3 слой - это тонкая алюминиевая пленка. Эта пленка выполняет две функции:

Увеличивает яркость свечения экрана, действуя как зеркало.

Основная функция состоит в защите люминофора от тяжелых ионов, которые вылетают из катода вместе с электронами.

Цветные кинескопы.

Принцип действия основан на том, что любой цвет и оттенок можно получить смешиванием трех цветов - красного, синего и зеленого. Поэтому цветные кинескопы имеют три электронных пушки и одну общую отклоняющую систему. Экран цвет­ного кинескопа состоит из отдельных участков, каждый из которых содержит три ячейки лю­минофора, которые светятся красным, синим и зеленым цветами. Причем размеры этих ячеек настолько малы и они расположены настолько близко друг к другу, что их свечение восприни­мается глазом как суммарное. Это общий принцип построения цветных кинескопов.

Мозаика (триады) экрана цветного кинескопа с теневой маской: R- красные, G- зеленые, B- синие люминофорные «точки».

Электропроводность полупроводников

Собственная проводимость полупроводников.

Собственным полупроводником называется идеально химически чистый полупроводник с однородной кристаллической решеткой на валентной орбите которого находится четыре электрона. В полупроводниковых приборах чаще всего используются кремний Si и германий Ge .

Ниже показана электронная оболочка атома кремния. В образовании химических связей и в процессе проводимости могут участвовать только четыре электрона внешней оболочки, называемые валентными электронами. Десять внутренних электронов в таких процессах не участвуют.


Кристаллическая структура полупроводника на плоскости может быть представлена следую­щим образом.

Если электрон получил энергию, большую ширины запрещенной зоны, он разрывает ковалентную связь и становится свободным. На его месте образуется вакансия, которая имеет положительный заряд, равный по величине заряду электрона и называется дыркой . В химически чистом полупро­воднике концентрация электронов n равна концентрации дырок p .

Процесс образования пары зарядов электрон и дырка называется генерацией заряда.

Свободный электрон может занимать место дырки, восстанавливая ковалентную связь и при этом излучая избыток энергии. Такой процесс называется рекомбинацией зарядов. В процессе рекомбинации и генерации зарядов дырка как бы движется в обратную сторону от направле­ния движения электронов, поэтому дырку принято считать подвижным положительным носи­телем заряда. Дырки и свободные электроны, образующиеся в результате генерации носителей заряда, называются собственными носителями заряда, а проводимость полупроводника за счет собственных носителей заряда называется собственной проводимостью проводника.

Примесная проводимость проводников.

Так как у химически чистых полупроводников проводимость существенно зависит от внешних условий, в полупроводниковых приборах применяются примесные полупроводники.


Если в полупроводник ввести пятивалентную примесь, то 4 валентных электрона восстанав­ливают ковалентные связи с атомами полупроводника, а пятый электрон остается свободным. За счет этого концентрация свободных электронов будет превышать концентрацию дырок. Примесь, за счет которой n > p , называется донорной примесью. Полупроводник, у которого n > p , называется полупроводником с электронным типом проводимости, или полупроводником n -типа.

В полупроводнике n -типа электроны называются основными носителями заряда, а дыр­ки - неосновными носителями заряда.

При введении трехвалентной примеси три ее валентных электрона восстанавливают ковалент­ную связь с атомами полупроводника, а четвертая ковалентная связь оказывается не восста­новленной, т. е. имеет место дырка. В результате этого концентрация дырок будет больше концентрации электронов.

Примесь, при которой p > n , называется акцепторной примесью.

Полупроводник, у которого p > n , называется полупроводником с дырочным типом проводимости, или полупроводником р-типа . В полупроводнике р-типа дырки называются основными носителями заряда, а электро­ны - неосновными носителями заряда.

Образование электронно-дырочного перехода.

Ввиду неравномерной концен­трации на границе раздела р и n полупроводника возникает диффузионный ток, за счет ко­торого электроны из n -области переходят в р-область , а на их месте остаются некомпенси­рованные заряды положительных ионов донорной примеси. Электроны, приходящие в р-область, рекомбинируют с дырками, и возникают некомпенсированные заряды отрицатель­ных ионов акцепторной примеси. Ширина р- n перехода - десятые доли микрона. На грани­це раздела возникает внутреннее электрическое поле р-n перехода, которое будет тормозя­щим для основных носителей заряда и будет их отбрасывать от границы раздела.

Для неосновных носителей заряда поле будет ускоряющим и будет переносить их в область, где они будут основными. Максимум напряженности электрического поля - на границе разде­ла.

Распределение потенциала по ширине полупроводника называется потенциальной диаграм­мой. Разность потенциалов на р- n переходе называется контактной разностью потенциалов или потенциальным барьером . Для того, чтобы основной носитель заряда смог преодолеть р- n переход, его энергия должна быть достаточной для преодоления потенциального барьера.

Прямое и обратное включение р- n перехода.

Приложим внешнее напряжение плюсом к р -области. Внешнее электрическое поле направле­но навстречу внутреннему полю р- n перехода, что приводит к уменьшению потенциального барьера. Основные носители зарядов легко смогут преодолеть потенциальный барьер, и поэто­му через р- n переход будет протекать сравнительно большой ток, вызванный основными носи­телями заряда.


Такое включение р- n перехода называется прямым, и ток через р- n переход, вызванный основными носителями заряда, также называется прямым током. Считается, что при прямом включении р- n переход открыт. Если подключить внешнее напряжение минусом на р-область , а плюсом на n -область , то возникает внешнее электрическое поле, линии напряженности кото­рого совпадают с внутренним полем р- n перехода. В результате это приведет к увеличению по­тенциального барьера и ширины р- n перехода. Основные носители заряда не смогут преодо­леть р- n переход, и считается, что р- n переход закрыт. Оба поля - и внутреннее и внешнее - яв­ляются ускоряющими для неосновных носителей заряда, поэтому неосновные носители заряда будут проходить через р- n переход, образуя очень маленький ток, который называется обрат­ным током . Такое включение р- n перехода также называется обратным.

Свойства р- n перехода. Вольтамперная характеристика р- n перехода

К основным свойствам р- n перехода относятся:

- свойство односторонней проводимости;

Температурные свойства р- n перехода;

Частотные свойства р- n перехода;

Пробой р- n перехода.

Свойство односторонней проводимости р- n перехода рассмотрим на вольтамперной характеристике.

Вольтамперной характеристикой (ВАХ) называется графически выраженная зависимость величины протекающего через р- n переход тока от величины приложенного напряжения I = f (U ) – рис.29.

Так как величина обратного тока во много раз меньше, чем прямого, то обратным током мож­но пренебречь и считать, что р- n переход проводит ток только в одну сторону. Температурное свойство р- n перехода показывает, как изменяется работа р- n перехода при из­менении температуры. На р- n переход в значительной степени влияет нагрев, в очень малой степени - охлаждение. При увеличении температуры увеличивается термогенерация носи­телей заряда, что приводит к увеличению как прямого, так и обратного тока. Частотные свойства р- n перехода показывают, как работает р- n переход при подаче на него переменного напряжения высокой частоты. Частотные свойства р- n перехода определяются двумя видами емкости перехода.

Первый вид емкости - это емкость, обусловленная неподвижными зарядами ионов донорной и акцепторной примеси. Она называется зарядной, или барьерной емкостью. Второй тип емкости - это диффузионная емкость, обусловленная диффузией подвижных носи­телей заряда через р- n переход при прямом включении.

Если на р- n переход подавать переменное напряжение, то емкостное сопротивление р- n пере­хода будет уменьшаться с увеличением частоты, и при некоторых больших частотах ем­костное сопротивление может сравняться с внутренним сопротивлением р- n перехода при пря­мом включении. В этом случае при обратном включении через эту емкость потечет достаточно большой обратный ток, и р- n переход потеряет свойство односторонней проводимости.

Вывод: чем меньше величина емкости р- n перехода, тем на более высоких частотах он может работать.

На частотные свойства основное влияние оказывает барьерная емкость, т. к. диффузионная емкость имеет место при прямом включении, когда внутреннее сопротивление р- n перехода мало.

Пробой р- n перехода .

При увеличении обратного напряжения энергия электрического поля становится достаточной для генерации носителей заряда. Это приводит к сильному увеличению обратного тока. Явление сильного увеличения обратного тока при определенном обратном напряжении назы­вается электрическим пробоем р- n перехода.

Электрический пробой - это обратимый пробой, т. е. при уменьшении обратного напряжения р- n переход восстанавливает свойство односторонней проводимости. Если обратное напряже­ние не уменьшить, то полупроводник сильно нагреется за счет теплового действия тока и р- n переход сгорает. Такое явление называется тепловым пробоем р- n перехода. Тепловой пробой необратим.

Полупроводниковые диоды

Полупроводни­ковым диодом называется устройство, состоящее из кристалла полупроводника, содержа­щее обычно один р-n переход и имеющее два вывода. Существует много различных типов диодов – выпрямительные, импульсные, туннельные, обращенные, сверхвысокочастотные диоды, а также стабилитроны, варикапы, фотодиоды, светодиоды и др.

Маркировка диодов состоит из 4 обозначений:

К С -156 А

Загрузка...
Top