Числовая последовательность. Числовые последовательности

Если каждому натуральному числу n поставлено в соответствие некоторое действительное число x n , то говорят, что задана числовая последовательность

x 1 , x 2 , … x n , …

Число x 1 называют членом последовательности с номером 1 или первым членом последовательности , число x 2 - членом последовательности с номером 2 или вторым членом последовательности, и т.д. Число x n называют членом последовательности с номером n .

Существуют два способа задания числовых последовательностей – с помощью и с помощью рекуррентной формулы .

Задание последовательности с помощью формулы общего члена последовательности – это задание последовательности

x 1 , x 2 , … x n , …

с помощью формулы, выражающей зависимость члена x n от его номера n .

Пример 1 . Числовая последовательность

1, 4, 9, … n 2 , …

задана с помощью формулы общего члена

x n = n 2 , n = 1, 2, 3, …

Задание последовательности с помощью формулы, выражающей член последовательности x n через члены последовательности с предшествующими номерами, называют заданием последовательности с помощью рекуррентной формулы .

x 1 , x 2 , … x n , …

называют возрастающей последовательностью, больше предшествующего члена.

Другими словами, для всех n

x n + 1 > x n

Пример 3 . Последовательность натуральных чисел

1, 2, 3, … n , …

является возрастающей последовательностью .

Определение 2. Числовую последовательность

x 1 , x 2 , … x n , …

называют убывающей последовательностью, если каждый член этой последовательности меньше предшествующего члена.

Другими словами, для всех n = 1, 2, 3, … выполнено неравенство

x n + 1 < x n

Пример 4 . Последовательность

заданная формулой

является убывающей последовательностью .

Пример 5 . Числовая последовательность

1, - 1, 1, - 1, …

заданная формулой

x n = (- 1) n , n = 1, 2, 3, …

не является ни возрастающей, ни убывающей последовательностью.

Определение 3. Возрастающие и убывающие числовые последовательности называют монотонными последовательностями .

Ограниченные и неограниченные последовательности

Определение 4. Числовую последовательность

x 1 , x 2 , … x n , …

называют ограниченной сверху, если существует такое число M, что каждый член этой последовательности меньше числа M .

Другими словами, для всех n = 1, 2, 3, … выполнено неравенство

Определение 5. Числовую последовательность

x 1 , x 2 , … x n , …

называют ограниченной снизу, если существует такое число m, что каждый член этой последовательности больше числа m .

Другими словами, для всех n = 1, 2, 3, … выполнено неравенство

Определение 6. Числовую последовательность

x 1 , x 2 , … x n , …

называют ограниченной, если она ограничена и сверху, и снизу.

Другими словами, существуют такие числа M и m, что для всех n = 1, 2, 3, … выполнено неравенство

m < x n < M

Определение 7. Числовые последовательности, которые не являются ограниченными , называют неограниченными последовательностями .

Пример 6 . Числовая последовательность

1, 4, 9, … n 2 , …

заданная формулой

x n = n 2 , n = 1, 2, 3, … ,

ограничена снизу , например, числом 0. Однако эта последовательность неограничена сверху .

Пример 7 . Последовательность

заданная формулой

является ограниченной последовательностью , поскольку для всех n = 1, 2, 3, … выполнено неравенство

На нашем сайте можно также ознакомиться с разработанными преподавателями учебного центра «Резольвента» учебными материалами для подготовки к ЕГЭ и ОГЭ по математике .

Для школьников, желающих хорошо подготовиться и сдать ЕГЭ по математике или русскому языку на высокий балл, учебный центр «Резольвента» проводит

подготовительные курсы для школьников 10 и 11 классов

Вида y = f (x ), x О N , где N – множество натуральных чисел (или функция натурального аргумента), обозначается y = f (n ) или y 1 , y 2 ,…, y n ,…. Значения y 1 , y 2 , y 3 ,… называют соответственно первым, вторым, третьим, … членами последовательности.

Например, для функции y = n 2 можно записать:

y 1 = 1 2 = 1;

y 2 = 2 2 = 4;

y 3 = 3 2 = 9;…y n = n 2 ;…

Способы задания последовательностей. Последовательности можно задавать различными способами, среди которых особенно важны три: аналитический, описательный и рекуррентный.

1. Последовательность задана аналитически, если задана формула ее n -го члена:

y n = f (n ).

Пример. y n = 2n – 1 последовательность нечетных чисел: 1, 3, 5, 7, 9, …

2. Описательный способ задания числовой последовательности состоит в том, что объясняется, из каких элементов строится последовательность.

Пример 1. «Все члены последовательности равны 1». Это значит, речь идет о стационарной последовательности 1, 1, 1, …, 1, ….

Пример 2. «Последовательность состоит из всех простых чисел в порядке возрастания». Таким образом, задана последовательность 2, 3, 5, 7, 11, …. При таком способе задания последовательности в данном примере трудно ответить, чему равен, скажем, 1000-й элемент последовательности.

3. Рекуррентный способ задания последовательности состоит в том, что указывается правило, позволяющее вычислить n -й член последовательности, если известны ее предыдущие члены. Название рекуррентный способ происходит от латинского слова recurrere – возвращаться. Чаще всего в таких случаях указывают формулу, позволяющую выразить n -й член последовательности через предыдущие, и задают 1–2 начальных члена последовательности.

Пример 1. y 1 = 3; y n = y n –1 + 4, если n = 2, 3, 4,….

Здесь y 1 = 3; y 2 = 3 + 4 = 7; y 3 = 7 + 4 = 11; ….

Можно видеть, что полученную в этом примере последовательность может быть задана и аналитически: y n = 4n – 1.

Пример 2. y 1 = 1; y 2 = 1; y n = y n –2 + y n –1 , если n = 3, 4,….

Здесь: y 1 = 1; y 2 = 1; y 3 = 1 + 1 = 2; y 4 = 1 + 2 = 3; y 5 = 2 + 3 = 5; y 6 = 3 + 5 = 8;

Последовательность, составленную в этом примере, специально изучают в математике, поскольку она обладает рядом интересных свойств и приложений. Ее называют последовательностью Фибоначчи – по имени итальянского математика 13 в. Задать последовательность Фибоначчи рекуррентно очень легко, а аналитически – очень трудно. n -е число Фибоначчи выражается через его порядковый номер следующей формулой .

На первый взгляд, формула для n -го числа Фибоначчи кажется неправдоподобной, так как в формуле, задающей последовательность одних только натуральных чисел, содержатся квадратные корни, но можно проверить «вручную» справедливость этой формулы для нескольких первых n .

Свойства числовых последовательностей.

Числовая последовательность – частный случай числовой функции, поэтому ряд свойств функций рассматриваются и для последовательностей.

Определение. Последовательность {y n } называют возрастающей, если каждый ее член (кроме первого) больше предыдущего:

y 1 y 2 y 3 y n y n +1

Определение.Последовательность {y n } называют убывающей, если каждый ее член (кроме первого) меньше предыдущего:

y 1 > y 2 > y 3 > … > y n > y n +1 > … .

Возрастающие и убывающие последовательности объединяют общим термином – монотонные последовательности.

Пример 1. y 1 = 1; y n = n 2 – возрастающая последовательность.

Таким образом, верна следующая теорема (характеристическое свойство арифметической прогрессии). Числовая последовательность является арифметической тогда и только тогда, когда каждый ее член, кроме первого (и последнего в случае конечной последовательности), равен среднему арифметическому предшествующего и последующего членов.

Пример. При каком значении x числа 3x + 2, 5x – 4 и 11x + 12 образуют конечную арифметическую прогрессию?

Согласно характеристическому свойству, заданные выражения должны удовлетворять соотношению

5x – 4 = ((3x + 2) + (11x + 12))/2.

Решение этого уравнения дает x = –5,5. При этом значении x заданные выражения 3x + 2, 5x – 4 и 11x + 12 принимают, соответственно, значения –14,5, –31,5, –48,5. Это – арифметическая прогрессия, ее разность равна –17.

Геометрическая прогрессия.

Числовую последовательность, все члены которой отличны от нуля и каждый член которой, начиная со второго, получается из предыдущего члена умножением на одно и то же число q , называют геометрической прогрессией, а число q – знаменателем геометрической прогрессии.

Таким образом, геометрическая прогрессия – это числовая последовательность {b n }, заданная рекуррентно соотношениями

b 1 = b , b n = b n –1 q (n = 2, 3, 4…).

(b и q – заданные числа, b ≠ 0, q ≠ 0).

Пример 1. 2, 6, 18, 54, … – возрастающая геометрическая прогрессия b = 2, q = 3.

Пример 2. 2, –2, 2, –2, … геометрическая прогрессия b = 2, q = –1.

Пример 3. 8, 8, 8, 8, … геометрическая прогрессия b = 8, q = 1.

Геометрическая прогрессия является возрастающей последовательностью, если b 1 > 0, q > 1, и убывающей, если b 1 > 0, 0 q

Одно из очевидных свойств геометрической прогрессии состоит в том, что если последовательность является геометрической прогрессией, то и последовательность квадратов, т.е.

b 1 2 , b 2 2 , b 3 2 , …, b n 2,… является геометрической прогрессией, первый член которой равен b 1 2 , а знаменатель – q 2 .

Формула n- го члена геометрической прогрессии имеет вид

b n = b 1 q n– 1 .

Можно получить формулу суммы членов конечной геометрической прогрессии.

Пусть дана конечная геометрическая прогрессия

b 1 , b 2 , b 3 , …, b n

пусть S n – сумма ее членов, т.е.

S n = b 1 + b 2 + b 3 + … + b n .

Принимается, что q № 1. Для определения S n применяется искусственный прием: выполняются некоторые геометрические преобразования выражения S n q .

S n q = (b 1 + b 2 + b 3 + … + b n –1 + b n )q = b 2 + b 3 + b 4 + …+ b n + b n q = S n + b n q b 1 .

Таким образом, S n q = S n + b n q – b 1 и, следовательно,

Это формула суммы n членов геометрической прогрессии для случая, когда q ≠ 1.

При q = 1 формулу можно не выводить отдельно, очевидно, что в этом случае S n = a 1 n .

Геометрической прогрессия названа потому, что в ней каждый член кроме первого, равен среднему геометрическому предыдущего и последующего членов. Действительно, так как

b n = b n- 1 q;

b n = b n+ 1 /q,

следовательно, b n 2= b n– 1 b n+ 1 и верна следующаятеорема(характеристическое свойство геометрической прогрессии):

числовая последовательность является геометрической прогрессией тогда и только тогда, когда квадрат каждого ее члена, кроме первого (и последнего в случае конечной последовательности), равен произведению предыдущего и последующего членов.

Предел последовательности.

Пусть есть последовательность {c n } = {1/n }. Эту последовательность называют гармонической, поскольку каждый ее член, начиная со второго, есть среднее гармоническое между предыдущим и последующим членами. Среднее геометрическое чисел a и b есть число

В противном случае последовательность называется расходящейся.

Опираясь на это определение, можно, например, доказать наличие предела A = 0 у гармонической последовательности {c n } = {1/n }. Пусть ε – сколь угодно малое положительное число. Рассматривается разность

Существует ли такое N , что для всех n ≥ N выполняется неравенство 1/N ? Если взять в качестве N любое натуральное число, превышающее 1, то для всех n ≥ N выполняется неравенство 1/n ≤ 1/N ε , что и требовалось доказать.

Доказать наличие предела у той или иной последовательности иногда бывает очень сложно. Наиболее часто встречающиеся последовательности хорошо изучены и приводятся в справочниках. Имеются важные теоремы, позволяющие сделать вывод о наличии предела у данной последовательности (и даже вычислить его), опираясь на уже изученные последовательности.

Теорема 1. Если последовательность имеет предел, то она ограничена.

Теорема 2. Если последовательность монотонна и ограничена, то она имеет предел.

Теорема 3. Если последовательность {a n } имеет предел A , то последовательности {ca n }, {a n + с} и {| a n |} имеют пределы cA , A + c , |A | соответственно (здесь c – произвольное число).

Теорема 4. Если последовательности {a n } и {b n } имеют пределы, равные A и B pa n + qb n } имеет предел pA + qB .

Теорема 5. Если последовательности {a n } и {b n }имеют пределы, равные A и B соответственно, то последовательность {a n b n } имеет предел AB.

Теорема 6. Если последовательности {a n } и {b n } имеют пределы, равные A и B соответственно, и, кроме того, b n ≠ 0 и B ≠ 0, то последовательность {a n / b n } имеет предел A/B .

Анна Чугайнова

Обучающая цель : дать понятие и определение числовой последовательности, рассмотреть способы задания числовых последовательностей, решать упражнения.

Развивающая цель : развивать логическое мышление, познавательные навыки, техники вычисления, навыки сравнения при выборе формул, навыки учебного труда

Воспитательная цель : воспитание положительных мотивов к учебе, добросовестного отношения к труду, дисциплинированности.

Тип урока : урок закрепления метериала.

Оборудование : интерактивная доска, тестирующее установка ACTIVwote,ACTIVwand,ACTIVslate, раздаточный материал.

План урока

  1. Организация урока.
  2. Повторение теоретического материала. Фронтальный опрос. Историческая справка.
  3. Закрепление: Решение упражнений по теме «Способы задания числовых последовательностей».
  4. Проверка знаний. Тест
  5. Домашнее задание.

Ход урока

I . Организационный момент.

II . Повторение теоретического материала.

1) Фронтальныйопрос.

1. Что называется числовой последовательностью?

Ответ : Множество чисел, элементы которого можно пронумеровать.

2. Приведи пример числовой последовательности.

Ответ :

2,4,6,8,10,…..
1,3,5,7,9,11,…..
3,6,9,12,15,….

3. Что называется членами числовой последовательности?

Ответ : Числа, составляющие числовую последовательность.

а 1 =2,а 2 =4,а 3 =6,а 4 =8,….
а 1 =1,а 2 =3,а 3 =5,а 4 =7,….
а 1 =3,а 2 =6,а 3 =9,а 4 =12,….

4. Что такое общий член числовой последовательности?

Ответ : ап называется общим членом последовательности,а саму последовательность коротко обозначают через {ап}.

5. Как обозначают числовую последовательность?

Ответ : Обычно числовую последовательность обозначают малыми буквами латинского алфавита с индексами, указывающими на номер этого члена в последовательности: а 1 ,а 2 ,а 3 ,а 4 ,….,а п,…

5. Когда числовую последовательность считаются заданной?

Ответ : Если мы можем указать любой член последовательности.

2) Историческая справка.

По словам математика Лейбница «кто хочет ограничиться настоящим без знания прошлого, тот никогда его не поймет».

ФИБОНАЧЧИ (Леонардо из Пизы)

Fibonacci (Leonardo of Pisa), ок . 1175–1250

Итальянский математик. Родился в Пизе, стал первым великим математиком Европы позднего Средневековья. В математику его привела практическая потребности установить деловые контакты. Он издавал свои книги по арифметике, алгебре и другим математическим дисциплинам. От мусульманских математиков он узнал о системе цифр, придуманной в Индии и уже принятой в арабском мире, и уверился в ее превосходстве (эти цифры были предшественниками современных арабских цифр).

Леонардо из Пизы, известный как Фибоначчи, был первым из великих математиков Европы позднего Средневековья. Будучи рожденным в Пизе в богатой купеческой семье, он пришел в математику благодаря сугубо практической потребности установить деловые контакты. В молодости Леонардо много путешествовал, сопровождая отца в деловых поездках. Например, мы знаем о его длительном пребывании в Византии и на Сицилии. Во время таких поездок он много общался с местными учеными.

Числовой ряд, носящий сегодня его имя, вырос из проблемы с кроликами, которую Фибоначчи изложил в своей книге «Liber abacci», написанной в 1202 году:

Человек посадил пару кроликов в загон, окруженный со всех сторон стеной. Сколько пар кроликов за год может произвести на свет эта пара, если известно, что каждый месяц, начиная со второго, каждая пара кроликов производит на свет одну пару?

Можете убедиться, что число пар в каждый из двенадцати последующих месяцев месяцев будет соответственно 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ...

Иными словами, число пар кроликов создает ряд, каждый член в котором - сумма двух предыдущих. Он известен как ряд Фибоначчи , а сами числа - числа Фибоначчи . Оказывается, эта последовательность имеет множество интересных с точки зрения математики свойств. Вот пример: вы можете разделить линию на два сегмента, так что соотношение между большим и меньшим сегментом будет пропорционально соотношению между всей линией и большим сегментом. Этот коэффициент пропорциональности, приблизительно равный 1,618, известен как золотое сечение . В эпоху Возрождения считалось, что именно эта пропорция, соблюденная в архитектурных сооружениях, больше всего радует глаз. Если вы возьмете последовательные пары из ряда Фибоначчи и будете делить большее число из каждой пары на меньшее, ваш результат будет постепенно приближаться к золотому сечению.

С тех пор как Фибоначчи открыл свою последовательность, были найдены даже явления природы, в которых эта последовательность, похоже, играет немаловажную роль. Одно из них - филлотаксис (листорасположение) - правило, по которому располагаются, например, семечки в соцветии подсолнуха.Семечки у подсолнуха упорядочены в две спирали. Числа, обозначающие количество семечек в каждой из спиралей, являются членами удивительной математической последовательности.

Семечки упорядочены в два ряда спиралей, один из которых идет по часовой стрелке, другой против. И каково же число семян в каждом случае? 34 и 55.

Числа Фибоначчи 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ...

Последовательность чисел, каждый член которой равен сумме двух предыдущих, имеет множество любопытных свойств.

III. Закрепление.

Работа по учебнику (цепочкой)

№343 Напишите первые пять членов последовательности.

1. а n =2 n +1/2 n

2. х n =3n2+2 n+1

3.

1. Решение:

а n =2 n +1/2 n

Ответ :

2. Решение:

n=1, x 1 =3*1 2 +2*1+1=3+2+1=6

n=2, x 2 =3*2 2 +2*2+1=3*4+4+1=12+5=17

n=3, x 3 =3*3 2 +2*3+1=27+6+1=34

n=4, x 4 =3*4 2 +2-4+1=3*16+8+1=48+9=57

n=5, x 5 =3*5 2 +2*5+1=3*25+10+1=75+11=86

Ответ : 6,17,34,57,86…….

3. Решение:

Ответ :

№344. Напишите формулу общего члена последовательности натуральных чисел, кратных 3.

Ответ : 0,3,6,9,12,15,.... 3n, а n =3n

№345. Напишите формулу общего члена последовательности натуральных чисел, кратных 7.

Ответ : 0,7,14,25,28,35,42.... 7n, а n =7n

№346 Напишите формулу общего члена последовательности натуральных чисел,которые при делении на 4 дают в остатке 1.

Ответ :5,9,13,17,21....... 4 n +1 , а n =4n+1

№347 Напишите формулу общего члена последовательности натуральных чисел,которые при делении на 5 дают в остатке 2.

Ответ : а n =5n+2, 7.12,17,22, 27,.... 5 n +2

№348 Напишите формулу общего члена последовательности.

Бесконечной числовой последовательностью называется числовая функция, определенная на множестве всех натуральных чисел. Общий вид: а 1 ; а 2 ; а 3 ; … а n ; … (или (а n)).

Способы задания последовательностей:

1. Последовательность может быть задана при помощи формулы, указывающей, как по номеру n члена последовательности вычислить его значение а.

Последовательность, у которой все члены принимают равные между собой значения, называется постоянной последовательностью.

2. Реккурентный (индуктивный) способ: он состоит в том, что указывается правило (обычно это формула), позволяющая вычислить общий член последовательности через предыдущие, и задается несколько начальных членов последовательности. Эта формула называется реккурентным соотношением.

3. Последовательность может быть задана словесно, т.е. описанием ее членов.

При изучении последовательностей удобно использовать их геометрическое изображение. Для этого используют в основном 2 способа:

1. Т.к. последовательность (а n) есть функция, заданная на N, то ее можно изобразить как график этой функции с координатами точек (n; а n).

2. Члены последовательности (а n) можно изобразить точками х=а n .

Ограниченные и неограниченные последовательности.

Последовательность (а n) называется ограниченной, если существуют числа M и m, такие, что имеет место неравенство m≤a n ≤M. В противном случае она называется неограниченной.

Существует 3 вида неограниченных последовательностей:

1. Для нее существует m и не существует M – в таком случае она ограниченная снизу и неограниченная сверху.

2. Для нее не существует m и существует M – в таком случае она неограниченная снизу и ограниченная сверху.

3. Для нее не существует ни m, ни М – в таком случае она не ограниченная ни снизу, ни сверху.

Монотонные последовательности.

К монотонным последовательностям относятся убывающие, строго убывающие, возрастающие, строго возрастающие последовательности.

Последовательность (а n) называется убывающей, если каждый предыдущий член не меньше последующего: а n +1 ≤a n .



Последовательность (а n) называется строго убывающей, если каждый предыдущий член строго больше последующего: а n >a 2 >a 3 >…>a n +1 >…

Последовательность (а n) называется возрастающей, если каждый последующий член не меньше предыдущего: а n ≤a n +1 .

Последовательность называется строго возрастающей, если каждый последующий член строго больше предыдущего: а 1

Предел числовой последовательности. Основные теоремы о пределах.

Число а называется пределом последовательности (а n), если для каждого положительного числа ε найдется такое натуральное число N, что для любого n>N выполняется неравенство:

|a n – a| < ε.

В этом случае пишут: lim a n = a , или a n ->a при n->∞.

Последовательность, имеющая предел, называется сходящейся, а не имеющая предела – расходящейся.

Если последовательность имеет предел, то она ограниченная.

Всякая сходящаяся последовательность имеет только один предел.

Последовательность называется бесконечно малой, если ее предел равен нулю.

Для того, чтобы число а было пределом последовательности (а n), необходимо и достаточно, чтобы а n имело представление а n =а+α n , где (α n) - бесконечно малая последовательность.

Сумма двух бесконечно малых последовательностей есть бесконечно малая последовательность.

Произведение бесконечно малой последовательности на ограниченную последовательность есть бесконечно малая последовательность.

Теоремы о пределах:

1. О пределе суммы: Если последовательность (а n) и (в n) сходятся, то последовательность (а n + в n) также сходится и: lim (а n + в n) = lim а n + lim в n .

n ->∞ n ->∞ n ->∞

2. О пределе произведения: Если последовательности (а n) и (в n) сходятся, то последовательность (а n ∙ в n) также сходится и:

lim (а n ∙ в n) = lim а n ∙ lim в n .

n ->∞ n ->∞ n ->∞

Следствие 1: Постоянный множитель можно выносить за знак предела:

lim (са n) = с ∙ lim а n

n ->∞ n ->∞

3. Если последовательности (а n) и (в n) сходятся, то последовательность (а n /в n) также сходится и: lim (а n / в n) = (lim а n)/ (lim в n).

n ->∞ n ->∞ n ->∞

Функция. Способы задания функции.

Если каждому элементу х по какому-либо правилу f поставлен в соответствие элемент у, единственный для каждого х, то говорят, что на множестве А задана функция f со значением из множества В, и пишут: f:А->В, или у=f (х).

Пусть задана функция у=f (х). Тогда х назыв. аргументом или независимой переменной, а у – значением функции или зависимой переменной.

Множество А называют областью определения функции, а множество всех у, поставленных в соответствие хотя бы одному х – множеством значений функции. Область определения функции называют также областью значений аргумента, или областью изменения независимой переменной..

Способы задания функции:

1. Табличный способ.

2. Аналитический способ: при таком способе указывается область определения функции (множество А), и формулируется закон (задается формула), по которому каждому х сопоставляется соответствующий у.

3. Способ словесного описания.

4. Геометрический (графический) способ: задать функцию графически – значит изобразить ее график.






2. Определить арифметическое действие, с помощью которого из двух крайних чисел получено среднее, и вместо знака * вставить пропущенное число: ,3104,62,51043,60,94 1,7*4,43,1*37,2*0,8


3. Учащиеся решали задание, в котором требуется найти пропущенные числа. У них получились разные ответы. Найдите правила, по которым ребята заполнили клетки. Задание Ответ 1Ответ




Определение числовой последовательности Говорят, что задана числовая последовательность, если всякому натуральному числу (номеру места) по какому-либо закону однозначно поставлено в соответствие определенное число (член последовательности). В общем виде указанное соответствие можно изобразить так: y 1, y 2, y 3, y 4, y 5, …, y n, … … n … Число n есть n-ый член последовательности. Всю последовательность обычно обозначают (y n).








Аналитический способ задания числовых последовательностей Последовательность задана аналитически, если указана формула n-ого члена. Например, 1) y n= n 2 – аналитическое задание последовательности 1, 4, 9, 16, … 2) y n= С – постоянная (стационарная) последовательность 2) y n= 2 n – аналитическое задание последовательности 2, 4, 8, 16, … Решить 585


Рекуррентный способ задания числовых последовательностей Рекуррентный способ задания последовательности состоит в том, что указывают правило, позволяющее вычислить n-ый член, если известны ее предыдущие члены 1) арифметическая прогрессия задается рекуррентными соотношениями a 1 =a, a n+1 =a n + d 2) геометрическая прогрессия – b 1 =b, b n+1 =b n * q


Закрепление 591, 592 (a, б) 594, – 614 (a)




Ограниченность сверху Последовательность (y n) называют ограниченной сверху, если все ее члены не больше некоторого числа. Другими словами, последовательность (y n) ограничена сверху, если существует такое число M что для любого n выполняется неравенство y n M. M – верхняя граница последовательности Например, -1, -4, -9, -16, …, -n 2, …


Ограниченность снизу Последовательность (y n) называют ограниченной снизу, если все ее члены не меньше некоторого числа. Другими словами, последовательность (y n) ограничена сверху, если существует такое число m что для любого n выполняется неравенство y n m. m – нижняя граница последовательности Например, 1, 4, 9, 16, …, n 2, …


Ограниченность последовательности Последовательность (y n) называют ограниченной, если можно указать такие два числа A и B, между которыми лежат все члены последовательности. Выполняется неравенство Ay n B A – нижняя граница, B – верхняя граница Например, 1 – верхняя граница, 0 – нижняя граница



Убывающая последовательность Последовательность называется убывающей, если каждый ее член меньше предыдущего: y 1 > y 2 > y 3 > y 4 > y 5 > … > y n > … Например, y 2 > y 3 > y 4 > y 5 > … > y n > … Например,"> y 2 > y 3 > y 4 > y 5 > … > y n > … Например,"> y 2 > y 3 > y 4 > y 5 > … > y n > … Например," title="Убывающая последовательность Последовательность называется убывающей, если каждый ее член меньше предыдущего: y 1 > y 2 > y 3 > y 4 > y 5 > … > y n > … Например,"> title="Убывающая последовательность Последовательность называется убывающей, если каждый ее член меньше предыдущего: y 1 > y 2 > y 3 > y 4 > y 5 > … > y n > … Например,"> 23


Проверочная работа Вариант 1Вариант 2 1. Числовая последовательность задана формулой а) Вычислите первые четыре члена данной последовательности б) Является ли членом последовательности число? б) Является ли членом последовательности число 12,25? 2. Составьте формулу -ого члена последовательности 2, 5, 10, 17, 26,…1, 2, 4, 8, 16,…

Загрузка...
Top